www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Beweis der Wohlordnung
Beweis der Wohlordnung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Wohlordnung: Tipps
Status: (Frage) überfällig Status 
Datum: 11:04 So 19.12.2010
Autor: SolRakt

Aufgabe
Auf [mm] \IZ [/mm] sei die Relation

m [mm] \sim [/mm] n [mm] \gdw [/mm] |m| [mm] \le [/mm] |n| und (|m| = |n| [mm] \Rightarrow [/mm] m [mm] \le [/mm] n)

[Dieses [mm] \sim [/mm] soll dieses Wohlordnungszeichen sein, aber ich finde das im Editor nicht]

gegeben. [mm] (\le [/mm] sei übliche Ordnung auf [mm] \IZ) [/mm] Zu zeigen ist, dass [mm] \sim [/mm] eine Wohlordnung ist.

Hallo,

Komme da nicht wirklich weiter. Also erstmal etwas, dass ich weiß:

Def.

Eine nichtleere Menge A mit einer Ordnungsrelation [mm] \sim [/mm] heißt wohlgeordnet, wenn in jeder nichtleeren Teilmenge B von A ein Element x [mm] \in [/mm] B existiert, sodass x [mm] \sim [/mm] y [mm] \forall [/mm] y [mm] \in [/mm] B gilt.
Ein solches Element x heißt dann kleinstes Element oder Minimum der Teilmenge B.

So, dass ist die Definition mal ganz allgemein. Ich weiß auch, welche Wohlordnung gemeint ist:

0 [mm] \sim [/mm] 1 [mm] \sim [/mm] -1 [mm] \sim [/mm] 2 [mm] \sim [/mm] -2 [mm] \sim [/mm] 3 [mm] \sim [/mm] -3 ...

Anschaulich ist die Beh. klar, da 0 das kleinste Element ist.

Bei [mm] \IN [/mm] hätte ich es vllt mit Induktion bewiesen, aber wie zeige ich das auf [mm] \IZ [/mm]

Vielen Danke für Hilfe.



        
Bezug
Beweis der Wohlordnung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:40 So 19.12.2010
Autor: SolRakt

Ich habe jetzt so angefangen, aber ist bestimmt nicht richtig.

Sei M eine nichtleere Teilmenge von [mm] \IZ [/mm] bzgl. [mm] \sim [/mm]

und N = { m | [mm] \existsn: [/mm] m [mm] \in [/mm] M}

Dann ist N eine nichtleere Teilmenge von [mm] \IZ [/mm] bzgl. [mm] \sim. [/mm]

Diese besitzt laut Wohlordnungssatz ein kleinstes Element, etwa m*.

Da m* [mm] \in [/mm] N ist

P = {n | m* [mm] \in [/mm] M }

eine nichtleere Teilmenge von [mm] \IZ [/mm] bzgl. [mm] \sim [/mm]


So hab ich jetzt also angefangen, aber glaube nicht, dass das so stimmt. Kann mir bitte jemand dabei helfen?

Bezug
                
Bezug
Beweis der Wohlordnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Di 21.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Beweis der Wohlordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 So 19.12.2010
Autor: felixf

Moin,

wenn du minimalen Aufwand betrieben haettest und im Forum geschaut haettest, haettest du das hier gefunden.

> So, dass ist die Definition mal ganz allgemein. Ich weiß
> auch, welche Wohlordnung gemeint ist:
>  
> 0 [mm]\sim[/mm] 1 [mm]\sim[/mm] -1 [mm]\sim[/mm] 2 [mm]\sim[/mm] -2 [mm]\sim[/mm] 3 [mm]\sim[/mm] -3 ...

So eben nicht.

LG Felix


Bezug
                
Bezug
Beweis der Wohlordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:58 So 19.12.2010
Autor: SolRakt

Ja ich habe nachgeschaut, aber verstehe das da nicht. Ich kann doch nicht einfach sagen, dass diese Menge ein kleinstes Element hat. Wie soll die denn sonst geordnet sein? [mm] \IZ [/mm] selbst hat ja keine Wohlordnung. Bin für Hilfe sehr dankbar.

Bezug
        
Bezug
Beweis der Wohlordnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Di 21.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]