www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
stetig
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

stetig

Definition stetig


Schule

Stetigkeit heißt im Prinzip nichts Anderes, als dass man den Graphen einer Funktion in ihrem Definitionsbereich ohne den Stift abzusetzen zeichnen kann. D.h. der Graph darf keine Sprünge machen (wie z.B. bei der Integer-Funktion). Das ist natürlich keine mathematisch exakte Definition, aber eine gute Veranschaulichung.

Mathematisch exakt lautet es in etwa so:
Die Funktion f ist an der Stelle $ x_{0} \in D $ stetig, wenn  $ \limes_{x\rightarrow\ x_{0}}f(x) $ existiert und $ \limes_{x\rightarrow\ x_{0}}f(x) = f(x_{0}) $

D.h. der (beidseitige!) Grenzwert muss existieren und dem Funktionswert an dieser Stelle entsprechen. Anschaulich: Wenn man sich von links der Stelle $ x_{0} $ nähert, muss man auf denselben Funktionswert kommen, wie wenn man sich ihr von rechts nähert UND der Wert muss gleich dem Funktionswert an dieser Stelle sein.
Eine Funktion ist stetig, wenn sie an allen Stellen ihres Definitionsbereiches stetig ist.

Zwei Beispiele für stetige Funktionen:
$ f(x)=x^2 $
$ f(x)= \bruch{1}{x} $

Und für eine unstetige Funktion:
$ f(x)= [x] $


Universität

Seien $ (X,d)\, $ und $ (Y,e)\, $ metrische Räume und sei $ f\colon (X,d) \to (Y,e). $ Sei $ x_0 \in X. $ Man sagt, dass $ f\, $ stetig in $ x_0 \in X $ ist, wenn der Funktionsgrenzwert $ \lim_{x \to x_0}f(x) $ existiert und zudem $ f(x_0)=\lim_{x \to x_0}f(x) $ gilt. Es ist also $ f\, $ genau dann stetig in $ x_0 \in X, $ wenn:
$ \forall \epsilon > 0 \exists \delta=\delta_{x_0,\epsilon} > 0:\;\;\forall x \in X: \;\;d(x,x_0) < \delta \Longrightarrow e(f(x),\blue{\;f(x_0)\;}) < \epsilon. $
Ist $ f\, $ nicht stetig in $ x_0 \in X, $ so sagt man, dass $ f\, $ unstetig in $ x_0 \in X $ sei.
Ferner heißt $ f\, $ (kurz) stetig, wenn $ f\, $ stetig in allen $ x \in X $ ist. Folglich ist $ f\, $ genau dann unstetig, wenn es ein $ x_0 \in X $ so gibt, dass $ f\, $ unstetig in $ x_0 $ ist!

Bemerkungen:
(1) Man beachte, dass es nur sinnvoll ist, eine Funktion an Stellen ihres Definitionsbereichs auf (Un-)Stetigkeit zu untersuchen!

(2) In metrischen Räumen ist der Begriff der Stetigkeit äquivlalent zu dem Begriff der Folgenstetigkeit.

Erstellt: Do 06.01.2005 von informix
Letzte Änderung: Mi 19.06.2013 um 15:55 von Marcel
Weitere Autoren: Loddar
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]