www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - zentrale Grenzwertsatz
zentrale Grenzwertsatz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zentrale Grenzwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 So 29.05.2011
Autor: folken

Aufgabe
Sei [mm] (x_{i}) [/mm] i [mm] \in \IN [/mm] eine Folge standard-normalverteilter und unabhängiger Zufallsvariablen, also [mm] X_{i}\sim [/mm] N(0,1) für alle i [mm] \in \IN. [/mm] Zeigen Sie, dass dann für alle n [mm] \in \IN [/mm] gilt:

[mm] Z_{n}=\bruch{\overline{X}-\mu}{\bruch{\sigma}{\wurzel{n}}}=\bruch{1}{\wurzel{n}}\summe_{i=1}^{n}{X_i} \sim [/mm] N(0,1).

Wie passt das mit dem zentralen Grenzwertsatz zusammen?

Hallo,

leider fehlt mir hier der richtige Ansatz. Ich hatte bereits versucht mir das über den zentralen Grenzwertsatz herzuleiten. Das war aber auch nicht das Richtige. Also meine Frage: wo setzt man an bzw. wie fängt man an.

Gruß folken

        
Bezug
zentrale Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Mo 30.05.2011
Autor: Fry

Hey folken,

aber sagt nicht gerade der zentrale Grenzwertsatz gerade,
dass die Variable [mm] \bruch{\sum_{i=1}^{n}X_i-n*0}{\wurzel{n*1}} [/mm] in Verteilung gegen eine [mm] $\mathcal{N}(0,1)$-verteilte [/mm] Zufallsvariable konvergiert?
Die Voraussetzungen sind ja alle erfüllt.


Gruß
Fry


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]