www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - zeige komplexe basis
zeige komplexe basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zeige komplexe basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Mo 14.01.2013
Autor: elmanuel

Aufgabe
Zeige: Die Vektoren (i,1,0), (0,1,i), (0,i,1) bilden eine Basis des [mm] \IC^3 [/mm]
(Drücke [mm] y_1,y_2_y_3 [/mm] aus)

Hallo liebe Gemeinde!

also ich hab mal versucht das als Matrix aufzuschreiben

(ganz rechts soll der Lösungsvektor sein.

[mm] \pmat{ i & 1 & 0 & y_1 \\ 0 & 1 & i & y_2 \\ 0 & i & 1 & y_3 } [/mm]

in Zeilenstufenform dann:

[mm] \pmat{ i & 1 & 0 & y_1 \\ 0 & i & -1 & y_2*i \\ 0 & 0 & 2 & y_3-y_2*i } [/mm]

so ... jetzt weis ich nicht weiter...

soll ich jetzt anhand dieser matrix [mm] y_1, y_2, y_3 [/mm] ausdrücken?



        
Bezug
zeige komplexe basis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Mo 14.01.2013
Autor: fred97


> Zeige: Die Vektoren (i,1,0), (0,1,i), (0,i,1) bilden eine
> Basis des [mm]\IC^3[/mm]


>  (Drücke [mm]y_1,y_2_y_3[/mm] aus)

Was ist denn damit gemeint ?


>  Hallo liebe Gemeinde!
>  
> also ich hab mal versucht das als Matrix aufzuschreiben
>  
> (ganz rechts soll der Lösungsvektor sein.
>  
> [mm]\pmat{ i & 1 & 0 & y_1 \\ 0 & 1 & i & y_2 \\ 0 & i & 1 & y_3 }[/mm]
>  
> in Zeilenstufenform dann:
>  
> [mm]\pmat{ i & 1 & 0 & y_1 \\ 0 & i & -1 & y_2*i \\ 0 & 0 & 2 & y_3-y_2*i }[/mm]
>  
> so ... jetzt weis ich nicht weiter...
>  
> soll ich jetzt anhand dieser matrix [mm]y_1, y_2, y_3[/mm]
> ausdrücken?

Was ist denn damit gemeint ?


>  

>

Diees Matrix
  
[mm]\pmat{ i & 1 & 0\\ 0 & i & -1 \\ 0 & 0 & 2 }[/mm]

hat den Rang 3. Damit liegt lin. Unabhängigkeit vor.

FRED

Bezug
                
Bezug
zeige komplexe basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Mo 14.01.2013
Autor: elmanuel


> > Zeige: Die Vektoren (i,1,0), (0,1,i), (0,i,1) bilden eine
> > Basis des [mm]\IC^3[/mm]
>  
>
> >  (Drücke [mm]y_1,y_2_y_3[/mm] aus)

>  
> Was ist denn damit gemeint ?

ich denke mal das wir allgemein [mm] y_1, y_2 [/mm] und [mm] y_3 [/mm] als Linearkombination der Vektoren ausdrücken sollen um zu sehen das hier ein erzeugendensystem vorliegt...

> hat den Rang 3. Damit liegt lin. Unabhängigkeit vor.

richtig, aber für eine basis brauche ich doch lin. unabhängigkeit und auch die voraussetzung dass ein erzeugendensystem vorliegt oder?

Bezug
                        
Bezug
zeige komplexe basis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Di 15.01.2013
Autor: schachuzipus

Hallo elmanuel,


> > > Zeige: Die Vektoren (i,1,0), (0,1,i), (0,i,1) bilden eine
> > > Basis des [mm]\IC^3[/mm]
>  >  
> >
> > >  (Drücke [mm]y_1,y_2_y_3[/mm] aus)

>  >  
> > Was ist denn damit gemeint ?
>  
> ich denke mal das wir allgemein [mm]y_1, y_2[/mm] und [mm]y_3[/mm] als
> Linearkombination der Vektoren ausdrücken sollen um zu
> sehen das hier ein erzeugendensystem vorliegt...
>  
> > hat den Rang 3. Damit liegt lin. Unabhängigkeit vor.
>  
> richtig, aber für eine basis brauche ich doch lin.
> unabhängigkeit und auch die voraussetzung dass ein
> erzeugendensystem vorliegt oder?

Ja, aber es wird sich herausstellen, dass [mm]\IC^3[/mm] als [mm]\IC[/mm]-VR Dimension 3 hat.

Stelle doch dazu diesen bel. Vektor [mm]\vektor{y_1\\ y_2\\ y_3}\in\IC^3[/mm] (also [mm]y_i\in\IC[/mm]) als LK der drei gegebenen Vektoren dar.

Zunächst kannst du schreiben [mm]\vektor{y_1\\ y_2\\ y_3}=\vektor{a_1+b_1i\\ a_2+b_2i\\ a_3+b_3i}[/mm] mit [mm]a_i,b_i\in\IR[/mm]

Dann setze mal die LK an und zeige, dass sich das (komplex) linear kombinieren lässt aus den Vektoren [mm]\vektor{i\\ 1\\ 0},\vektor{0\\ 1\\ i},\vektor{0\\ i\\ 1}[/mm] ...


Gruß

schachuzipus


Bezug
                                
Bezug
zeige komplexe basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Di 15.01.2013
Autor: elmanuel

ja so gehts, danke schachuzipus!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]