www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - vollständiger metrischer raum
vollständiger metrischer raum < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständiger metrischer raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Di 24.04.2007
Autor: QuAdRaTwUrZeLcHeN

Aufgabe
Die Aufgabe:
Sei X die Menge der ganzen Zahlen, d(m,n) = |m-n|.
Zeige: (X,d) ist ein vollständig metrischer Raum.

Hallo!  
Ich würde dringend Hilfe gebrachen.

Die Aufgabe:
Sei X die Menge der ganzen Zahlen, d(m,n) = |m-n|.
Zeige: (X,d) ist ein vollständig metrischer Raum.

Soooooo.......................
Also, das es ein metrischer Raum ist hab ich schon bewiesen, dazu muss man ja nur die drei metriaxiome zeigen.
Mein Problem liegt beim "vollständigen" metrischen Raum

Wie zeige ich dass er vollständig ist???

Def: Ein metrischer Raum (X,d) heißt vollständig, wenn jede Cauchyfolge in X einen Grenzwert besitzt.

Wie komm ich da zu meiner Folge, für die ich das zeigen kann??

Bitte helft mir, wär euch echt für jeden Hinweis Dankbar!

___________________________________________________________
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
www.matheboard.de
(aber bisher noch keine richtige antwort bekommen)


        
Bezug
vollständiger metrischer raum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Di 24.04.2007
Autor: komduck

Nimm eine belibige Cauchyfolge wähle [mm] \varepsilon [/mm] = [mm] \bruch{1}{2} [/mm]
Nun zeige ab einem N ist die Folge konstant.
Folgen die ab einem N konstant sind konverieren immer.

In diesem Raum sind alle Menge offen. Räume in denen alle Mengen
offen sind nennt mach auch diskret. Hier konvergieren nur Folgen
die ab einem N konstant sind.

komduck

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]