unabhängige Zufallsvariablen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:43 Do 19.04.2012 | Autor: | clemenum |
Aufgabe | Man zeige: Sind $X,Y$ unabhängige ZV und ist [mm] $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ [/mm] eine bel. Funktionen, so sind [mm] $\varphi(X)$ [/mm] und [mm] $\varphi(Y)$ [/mm] unabhängig. |
Nun, zwei Zufallsvariablen heißen unabhängig, wenn die von ihnen erzeugten Ereignisräume stochastisch unabhängig sind. Aber, dass dies der Fall ist, scheint doch (zumindest intuitiv) völlig klar zu sein, denn, wenn schon die Ausgangsräume unabhängig sind, wie sollen dann bitte die Bilder abhängig sein... das kann doch nicht sein.
Wie soll so etwas einleuchtendes beweisen werden können? Hat hier jemand Tipps? Es scheint wie ein triviales Korrollar zu sein...
Mein Problem: Ich bin mir im Unklaren wie ich die Definition auf die Bilder anwenden soll; ich meine so, dass die Voraussetzung anwendbar wird.
Ich muss ja (im hiesigen speziellen Fall) zeigen, dass die Wahrscheinlichkeit der Schnittmenge der Bilder, gleich dem Produkt der Wahrscheinlichkeiten ist. Wie aber kann ich hier ausnutzen, dass $X,Y$ unab. sind?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:03 Do 19.04.2012 | Autor: | tobit09 |
Hallo clemenum,
> Nun, zwei Zufallsvariablen heißen unabhängig, wenn die
> von ihnen erzeugten Ereignisräume stochastisch unabhängig
> sind.
Also sind [mm] $\varphi(X)$ [/mm] und [mm] $\varphi(Y)$ [/mm] genau dann stochastisch unabhängig, wenn [mm] $\mathcal{A}:=\{(\varphi(X))^{-1}(A)\;|\;A\subseteq\IR\}$ [/mm] und [mm] $\mathcal{B}:=\{(\varphi(Y))^{-1}(B)\;|\;B\subseteq\IR\}$ [/mm] stochastisch unabhängig sind.
> Wie soll so etwas einleuchtendes beweisen werden können?
> Hat hier jemand Tipps?
Mit der Definition von stochastischer Unabhängigkeit von Zufallsvariablen! Schreibe dir zunächst hin, was du durch die stochastische Unabhängigkeit von X und Y weißt und was du zeigen musst.
> Mein Problem: Ich bin mir im Unklaren wie ich die
> Definition auf die Bilder anwenden soll; ich meine so, dass
> die Voraussetzung anwendbar wird.
> Ich muss ja (im hiesigen speziellen Fall) zeigen, dass die
> Wahrscheinlichkeit der Schnittmenge der UrBilder, gleich dem
> Produkt der Wahrscheinlichkeiten ist. Wie aber kann ich
> hier ausnutzen, dass [mm]X,Y[/mm] unab. sind?
Nutze beispielsweise [mm] $(\varphi(X))^{-1}(A)=X^{-1}(\varphi^{-1}(A))$ [/mm] für alle [mm] $A\subseteq\IR$.
[/mm]
Viele Grüße
Tobias
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:18 Fr 20.04.2012 | Autor: | Gonozal_IX |
Hallo Tobi,
> Nutze beispielsweise
> [mm](\varphi(X))^{-1}(A)=X^{-1}(\varphi^{-1}(A))[/mm] für alle
> [mm]A\subseteq\IR[/mm].
das war auch mein Gedanke (wollte ja auch erst antworten), funktioniert aber leider nicht, da die Meßbarkeit von [mm] \varphi [/mm] nicht vorausgesetzt ist!
Wollte ursprünglich daher erst die Aufgabenstellung kritisieren, mir fiel dann aber auch kein Beispiel ein, wo die fehlende Meßbarkeit obige Aussage "zerstört", insofern könnte sie auch stimmen....
MFG,
Gono.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:34 Fr 20.04.2012 | Autor: | tobit09 |
Hallo Gono,
danke für deinen Hinweis!
> das war auch mein Gedanke (wollte ja auch erst antworten),
> funktioniert aber leider nicht, da die Meßbarkeit von
> [mm]\varphi[/mm] nicht vorausgesetzt ist!
Das war mir sogar auch aufgefallen. Ich bin dann davon ausgegangen, dass in clemenums Vorlesung nur diskrete Zufallsexperimente behandelt wurden und sich somit die Messbarkeitsproblematik gar nicht stellt.
> Wollte ursprünglich daher erst die Aufgabenstellung
> kritisieren, mir fiel dann aber auch kein Beispiel ein, wo
> die fehlende Meßbarkeit obige Aussage "zerstört",
> insofern könnte sie auch stimmen....
Im allgemeinen Setting von Wahrscheinlichkeitsräumen wären [mm] $\varphi(X)$ [/mm] und [mm] $\varphi(Y)$ [/mm] i.A. gar keine Zufallsvariablen mehr und somit die Frage nach der Unabhängigkeit nicht sinnvoll:
Nimm als [mm] $\varphi$ [/mm] irgendeine nicht messbare Abbildung von [mm] $(\IR,\mathcal{B})$ [/mm] nach [mm] $(\IR,\mathcal{B})$, [/mm] wobei [mm] $\mathcal{B}$ [/mm] die Borelsche Sigma-Algebra sei. Sei [mm] $(\Omega,\mathcal{A})=(\IR,\mathcal{B})$ [/mm] und $X$ die Identität auf [mm] $\IR$. [/mm] Dann ist [mm] $\varphi(X)=\varphi$ [/mm] nicht messbar.
Viele Grüße
Tobias
|
|
|
|