umkehrfunktionen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | zeichne den graph der folgenden funktion f:x [mm] \mapsto [/mm] f (x) und gib aufgrund der graphischen darstellung eine geeignete einschränkung [mm] \lambda [/mm] der funktion an, die umkehrbar ist. die definitionsmenge von f ist zunächst [mm] \IR.
[/mm]
f(x) = [mm] x^2-6x+5 [/mm] |
ich versteh ehrlich gesagt gar nicht, was ich jetzt tun soll! es ist doch so, dass die wertemenge von f die definitionsmenge von f^(-1) ist, oder? und als wertemenge von f bekomme ich
[mm] W=[5;\infty[
[/mm]
stimmt das? wenn ja, warum kann ich dann nicht einfach sagen, dass die definitionsmenge von f^(-1) eben [mm] D=[5;\infty[ [/mm] ist?
und wozu brauche ich die graphische darstellung? die aufgabe muss man doch auch ohne graph. darstellung lösen können, oder?
vielen dank...:)
|
|
|
|
Hallo Mickeymouse !!!
Dir ist doch klar, dass eine Funktion vom Grad 2 genausoviele Nullstellen besitzt (im komplexen.)
Daher musst du dein Intervall insofern einschränken, an welcher Stelle sich der Scheitelpunkt des Graphen befindet.......d.h. in der Mitte der beiden Nullstellen (im komplexen)....
Da sonst die Funktion als Abbildung nicht injektiv ist.
Um das zu erkennen solltest du den Graphen wohl oder übel vorher zeichnen.
Gruß Mathmark
|
|
|
|
|
danke für die antwort! ich hab das auch verstanden, hoffe ich:) bei der aufgabe ist der scheitelpunkt bei (3;-4), oder? und der graph der funktion ist von [mm] ]-\infty;3[ [/mm] fallend und von [mm] ]3;\infty[ [/mm] steigend (frage zur schreibweise: stimmt das so, dass die 3 ausgeklammert sein muss?)
also könnte ich so einschränken, dass die deifinitionsmenge von [mm] [3;\infty[ [/mm] ist, oder? und wie lautet dann die umkehrfunktion?
danke!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:27 Mo 05.03.2007 | Autor: | leduart |
hallo
fuer die Umkehrfkt musst du einfach nach x aufloesen!
indem du deinen Graph an der WH spiegelst, siehst du auch, welches vorzeichen du jeweils fuer die Wurzel nehmen musst.
gruss leduart
|
|
|
|