Übereinstimmung von Punkten < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Hallo,
momentan beschäftige ich mich in meiner Bachelorarbeit mit der Entwicklung eines neuartigen parametrischen Fahrzeugauslegetools.
Im Rahmen dieser Arbeit baue ich mit dem Tool den VW Nils (http://www.autozeitung.de/auto-neuheiten/vw-nils-iaa-2011) nach und möchte den Grad der Übereinstimmung ermitteln, der in diesem Fall maximal zwischen Modell und Realität erreichbar ist. Außerdem habe ich verschiedene "Evolutionsstufen" meines Modells und ermittle daran, dass ich nach X Zeitaufwand eine Übereinstimmung von Y habe.
Ich habe nun also x-, y- und z-Werte von prägnanten Punkten des Realfahrzeugs und des virtuellen Modells aufgenommen und auf folgende Arten versucht, eine Übereinstimmung bzw. Abweichung zu ermitteln:
Übereinst. = [mm] \bruch{kleinerer Wert}{groesserer Wert}
[/mm]
Abweichung = [mm] \bruch{|ist-soll|}{soll}
[/mm]
Das Ergebnis wäre jeweils ein prozentualer Wert.
Beispiel: Ich habe zwei X Werte eines Punktes
Ist (= virtuelles Modell) = 75, Soll (= reales Fahrzeug) = 100
Aus meinen obigen Formeln ergibt sich somit:
Übereinst. = [mm] \bruch{75}{100} [/mm] = 0,75 = 75%
Abw. = [mm] \bruch{|75-100|}{100} [/mm] = 0,25 = 25%
Soweit ist alles gut.
Jetzt habe ich aber folgende Probleme:
#1:
Es kommt vor, dass ich auch mal einen Sollwert = 0 und einen Istwert = 10 habe.
Somit beträgt die Übereinstimmung = 0 und die Abweichung kann ich nicht bestimmen, da ich durch 0 dividieren müsste.
#2:
Dann habe ich es auch mal mit einem Sollwert von 18 und einem Istwert von -8 zu tun.
Ich hätte eine Übereinstimmung von -0,444 = -44,4% (soweit logisch: 0=0, 100= 100% --> -100 = -100%)
Die Abweichung beträgt in diesem Fall -1,44 = -144%
#3:
Bei einem Sollwert von 33 und einem Istwert von 258 ergibt sich eine Übereinstimmung von 0,128 = 12,8% und eine Abweichung von 6,818 = 681,8%
Dabei sind aber zusätzlich noch folgende Festlegungen getroffen:
Eine Übereinstimmung von 0 bzw. eine Abweichung von 1 wird nur erreicht, wenn ein Punkt nicht existiert.
Beispiel: Der VW Nils hat freistehende Räder mit Kotflügeln. Diese Kotflügel werden an einigen Punkten vermessen und mit dem virtuellen Modell verglichen. Das virtuelle Modell erhält die Kotflügel aber erst ganz zum Schluss. Somit muss ich zu Beginn ohne Kotflügel arbeiten, habe also eine Abweichung von 1.
Dann darf es aber später nicht vorkommen, dass ein vorhandener Punkt (siehe #3) eine größere Abweichung hervorbringt, als ein nicht existierender Punkt.
Außerdem muss ich auch Punkte mit einem Sollwert von Null mit einem Istwert vergleichen können, da beispielsweise das lenkrad im realen fahrzeug in der Y-Richtung den Wert 0 hat, im virtuellen Modell anfangs aber den Wert 10.
Aufgrund der aufgezählten Probleme kann ich die Übereinstimmung wohl nicht prozentual belegen, wie ich es ursprünglich vor hatte.
Also bin ich zu einem Mathedozent unserer Hochschule gegangen und er hat mir von der Methode der "kleinsten Quadratsumme der Fehler" berichtet.
Die Formel wäre [mm] \wurzel{(soll1-ist1)²+(soll2-ist2)²+(soll3-ist3)²+...}
[/mm]
Allerdings kann ich diese Formel nirgendwo im Internet oder in der mir zur Verfügung stehenden Literatur finden.
Könnt ihr mir sagen, wie dieses Verfahren sich richtig nennt?
Hättet ihr ansonsten vielleicht sogar noch eine andere Idee, wie ich die Übereinstimmung von Modell und Realität bestimmen kann?
Wichtig ist, dass ich am Ende so etwas wie einen Mittelwert oder Gesamtwert bekomme und sagen kann "Nach Auswertung von 110 Messpunkten beträgt die Übereinstimmung ....)
Gruß und vielen Dank im Voraus für eure Bemühungen,
Thomas
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Hallo!
Einen sehr wichtigen Punkt hast du schon erkannt:
Die bloße Abweichung ist nicht der richtige Wert. 1mm Abweichung im Durchmesser des Griffs des Tankdeckels mag durchaus im Rahmen liegen, aber wenn ein Kolben einen um 1mm zu kleinen Durchmesser hat, wäre das fatal. Und wenn der Sollwert =0 ist, wird es auch kompliziert.
Du benötigst zu jedem Wert Toleranzwerte, nur so läßt sich auch numerisch ausdrücken, ob der Wert OK ist, oder nicht.
[mm]\Delta=\left|\frac{\text{Ist}-\text{Soll}}{\text{Toleranz}}\right|[/mm]
liefert dir das gewünschte. Ein wert von 0 wäre perfekt, ein Wert von 1 wäre die Grenze des Erlaubten, und alles darüber liegt außerhalb der Toleranz.
Der Griff des Tankdeckels bekommt dann eine Toleranz von 2mm, der Kolben von 2µm. Obwohl beide nen Solldurchmesser von 80mm haben, wird 1mm beim Kolben einen Wert von 500 (ganz schlecht) erzeugen, während es beim Tankdeckel nur 0,5 (völlig OK) wären. Solche Toleranzen sollten bei der Konstruktion aber immer angegeben werden, da hohe Präzision einerseits aufwändig und teuer, andererseits aber nicht immer erforderlich ist.
Im Prinzip kannst du nun die [mm] \Delta [/mm] aller Messwerte addieren. Das Problem ist, daß der defekte Kolben in einer Reihe sehr guter Werte irgendwann nicht mehr hervorsticht. 249 perfekte Messwerte ( [mm] \Delta=0 [/mm] ) und der Kolben ergeben einen Gesamtwert von 500, das ist grade mal ein Faktor 2 über dem erlaubten Gesamtwert von 250.
Abhilfe schafft hier, die [mm] \Delta [/mm] vorher zu quadrieren. Große [mm] \Delta [/mm] fallen dann mehr ins Gewicht, und zwar extrem, während sehr gute Werte an Bedeutung verlieren. Die Summe wäre dann 250.000, das ist schon etwas mehr als 250.
Nun kannst du noch die Wurzel aus der Summe ziehen, und durch die Anzahl der Messwerte teilen. Dann kommst du zu dem, was dein Dozent meint, das nennt sich auch "die Methode der kleinsten Quadrate":
http://de.wikipedia.org/wiki/Methode_der_kleinsten_Quadrate
Dort gehts im Prinzip darum, daß du zu gegebenen x-Werten fehlerbehaftete y-Werte gemessen hast, und nun die Parameter einer Funktion so bestimmen willst, daß sie die Daten möglichst perfekt beschreibt. Dazu benutzt man dann ebenfalls die Wurzel aus den Quadraten in y-Richtung, allerdings ist das wohl nicht so ganz das, was du suchst.
Im Prinzip jedoch kannst du mit diesem Quadrat jedoch ein Qualitätskriterium einführen: Je näher bei 0 es ist, desto maßhaltiger ist das Auto insgesamt. Eine kolossale Überschreitung des Toleranzwerts wird sich zwar bemerkbar machen, aber eine leichte Überschreitung kann zwischen zahlreichen guten Werten auch untergehen. Das heißt: Die Überschreitung eines Toleranzwertes sollte ein absolutes KO-Kriterium sein. Und das wirst du nicht über ne Formel lösen können.
|
|
|
|