www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - tangentialebene an zwei gegebe
tangentialebene an zwei gegebe < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

tangentialebene an zwei gegebe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Sa 05.04.2008
Autor: hey

Aufgabe
Bestimmen Sie die Ebene E, die die beiden Kugeln K1: (x1 - [mm] 3)^2 [/mm] + (x3 + [mm] 2)^2 [/mm] = 36 und K2: (x1 + [mm] 1)^2 [/mm] + (x2 [mm] -4)^2 [/mm] = 36 berührt und den Punkt P(-1/0/5) enthält.

Hallo,

ich komme mit dieser Augabe nicht weiter.

Folgendes habe ich mir aber schon überlegt:
Als erstes habe ich die gegenseitige Lage der Kugeln bestimmt.
Dabei haben die Mittelpunkte einen Abstand von 6 voneinander.

Das heißt, die Ebene hat je einen Berührpunkt mit einer Kugel.
Weiter bin ich aber leider auch nicht gekommen.
meine erste idde war es, eine gerade durch die beiden Mittelpunkte zu legen. Der Richtungsvektor der Geraden müsste auch einer der Ebene sein.
Dann hab ich die Ebene auf dem der Schnittkreis liegt bestimmt und dachte, dass der Normalenvektor ein Richtungsvektor der Ebene ist. Dann hat man die beiden Richtungsvektoren und könnte so den Normalenvektor bestimmen ... aber das hat leider nicht geklappt.

Hat irgendjemand einen Tipp??

Vielen Dank im Vorraus ;)

        
Bezug
tangentialebene an zwei gegebe: Aufgabenstellung
Status: (Antwort) fertig Status 
Datum: 16:20 Sa 05.04.2008
Autor: MathePower

Hallo hey,

> Bestimmen Sie die Ebene E, die die beiden Kugeln K1: (x1 -
> [mm]3)^2[/mm] + (x3 + [mm]2)^2[/mm] = 36 und K2: (x1 + [mm]1)^2[/mm] + (x2 [mm]-4)^2[/mm] = 36
> berührt und den Punkt P(-1/0/5) enthält.

Die Kugelgleichung lautet so:

[mm]\left(x_{1}-m_{1}\right)^{2}+\left(x_{2}-m_{2}\right)^{2}+\left(x_{3}-m_{3}\right)^{2}=r^{2}[/mm]

,wobei [mm]\left(m_{1}| m_{2} | m_{3} \right)[/mm] der Mittelpunkt und r der Radius der Kugel ist.

Wie lautet die genaue Aufgabenstellung?

>  Hallo,
>  
> ich komme mit dieser Augabe nicht weiter.
>  
> Folgendes habe ich mir aber schon überlegt:
>  Als erstes habe ich die gegenseitige Lage der Kugeln
> bestimmt.
>  Dabei haben die Mittelpunkte einen Abstand von 6
> voneinander.
>
> Das heißt, die Ebene hat je einen Berührpunkt mit einer
> Kugel.
>  Weiter bin ich aber leider auch nicht gekommen.
> meine erste idde war es, eine gerade durch die beiden
> Mittelpunkte zu legen. Der Richtungsvektor der Geraden
> müsste auch einer der Ebene sein.
>  Dann hab ich die Ebene auf dem der Schnittkreis liegt
> bestimmt und dachte, dass der Normalenvektor ein
> Richtungsvektor der Ebene ist. Dann hat man die beiden
> Richtungsvektoren und könnte so den Normalenvektor
> bestimmen ... aber das hat leider nicht geklappt.
>  
> Hat irgendjemand einen Tipp??
>  
> Vielen Dank im Vorraus ;)

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]