www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - t-Verteilung
t-Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

t-Verteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:17 Fr 19.02.2010
Autor: jmeini

Aufgabe
f ist standard t-verteilt mit n Freiheitsgrade.

Berechne: f (a + bx) * f (x)


Helft mir bitte die diese Aufgabe zu rechnen!

Es gibt schon eine Lösung, wo f standardnormalverteilt ist

[Dateianhang nicht öffentlich]

Ich glaube, es müssen auch, wie bei Normalverteilung, zwei Klamerausdrücke rauskommen und nur einer davon muss abhängig von x sein.

Im Voraus bedanke ich mich :)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
t-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Sa 20.02.2010
Autor: steppenhahn

Hallo,

> f ist standard t-verteilt mit n Freiheitsgrade.
>
> Berechne: f (a + bx) * f (x)

Eigene Lösungsansätze sind hier immer gern gesehen!
Wie bei deinem Beispiel musst du mit quadratischer Ergänzung versuchen, genau das Gewünschte zu bekommen.

Es ist

$f(x) = [mm] C*\left(1+\frac{x^{2}}{n}\right)^{-\frac{n+1}{2}}$ [/mm]

mit $C = [mm] \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n*\pi}*\Gamma\left(\frac{n}{2}\right)}$. [/mm] Nun must du eben beginnen:

$f(a*x+b)*f(x) = [mm] C^{2}*\left(1+\frac{(a*x+b)^{2}}{n}\right)^{-\frac{n+1}{2}}*\left(1+\frac{x^{2}}{n}\right)^{-\frac{n+1}{2}}$ [/mm]

$= [mm] C^{2}*\left(\left(1+\frac{(a*x+b)^{2}}{n}\right)*\left(1+\frac{x^{2}}{n}\right)\right)^{-\frac{n+1}{2}}$ [/mm]

Nun mach mal weiter!
(Oder sag', wo deine Probleme liegen)

Grüße,
Stefan

Bezug
                
Bezug
t-Verteilung: Rückfrage
Status: (Frage) überfällig Status 
Datum: 21:40 Sa 20.02.2010
Autor: jmeini

Aufgabe
f ist standard t-verteilt mit n Freiheitsgrade.
Berechne: f (a + bx) * f (x)  

Ich schaffe nicht (1 + [mm] \bruch{(a + b*x)^{2}}{n})*(1 [/mm] + [mm] \bruch{x^{2}}{n}) [/mm] wie im Falle der Standardnormalverteilung zu zerlegen. :(

Bezug
                        
Bezug
t-Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Sa 20.02.2010
Autor: steppenhahn

Hallo,

du musst, denke ich, quadratische Ergänzung machen.

> f ist standard t-verteilt mit n Freiheitsgrade.
> Berechne: f (a + bx) * f (x)
> Ich schaffe nicht (1 + [mm]\bruch{(a + b*x)^{2}}{n})*(1[/mm] +
> [mm]\bruch{x^{2}}{n})[/mm] wie im Falle der Standardnormalverteilung
> zu zerlegen. :(

zeig' uns doch mal deine Versuche!

Grüße,
Stefan

Bezug
                        
Bezug
t-Verteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mo 22.02.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]