www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - sym. bil.form - total isotrop
sym. bil.form - total isotrop < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sym. bil.form - total isotrop: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:23 Mi 11.01.2012
Autor: Schadowmaster

Aufgabe
Sei $V$ ein endlich-dimensionaler reeller Vektorraum, $b: V [mm] \times [/mm] V [mm] \to \IR$ [/mm] eine nicht ausgeartete, symetrische Bilinearform.
Bestimmen Sie die maximale Dimension eines total isotropen Unterraums von $V$ in Abhängigkeit vom Typ $(p,q)$ von $b$.

moin,

Bei obiger Aufgabe hab ich leider grad ein paar Probleme...
Zu aller erst mal hab ich mir folgendes überlegt:
Sei dim$(V) = n [mm] \in \IN$. [/mm]
Dann muss $p+q=n$ gelten, da $b$ sonst ausgeartet wäre.
Ist nun $W$ ein solcher total isotroper Unterraum von $V$, so muss ja ins besondere $b(w,w) = 0$ für alle $w [mm] \in [/mm] W$ gelten.
So spontan würde ich sagen, dass das ein Widerspruch zum Typ ist, denn hat $b$ den Typ $(p,q)$, so gibt es ja einen Unterraum der Dimension $p$, auf dem $b$ positiv definit ist und einen der Dimension $q$, auf dem $b$ negativ definit ist.

Könnte ich aber vielleicht nicht auf der anderen Seite einen Vektor $v$ basteln, sodass $b(v,v) = 0$; etwa als Linearkombination aus den beiden obigen Räumen?

Ich bin da  alles in allem etwas verwirrt und hab leider für keine meiner Vermutungen einen brauchbaren Beweis...

Danke schonmal für Tipps und Hilfe.


lg

Schadow


        
Bezug
sym. bil.form - total isotrop: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:36 Do 12.01.2012
Autor: hippias

Mal angenommen $V$ hat eine Basis $u,v$ mit $b(u,u)=1$ und $b(v,v)= -1$. Dann ist $W= [mm] \IR(u+v)$ [/mm] total isotrop.

Bezug
        
Bezug
sym. bil.form - total isotrop: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 13.01.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]