www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - stetige Abhängigkeit
stetige Abhängigkeit < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetige Abhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 So 12.03.2006
Autor: ThommyM

Ich muss im Moment ein Thema bearbeiten, dass viel mit gewöhnlichen Differentialgleichungen zu tun hat. Leider habe ich die Vorlesung gewöhnliche DGL nicht besucht. Daher habe ich eine Frage, die vielleicht sehr leicht zu beantworten ist. Und zwar kommt in einem Beweis folgender Satz vor:

Im System [mm]\dot{x}=f(x,u)[/mm] sei [mm]f(x,u)[/mm] differenzierbar. Dann hängen die Lösungen von [mm]f(x,u)[/mm] stetig von dem Startwert [mm]x_0[/mm] ab.

Ich habe mir auch schon ein Fachbuch genommen und geguckt, ob ich irgendwo einen Satz mit dieser Aussage finde, aber ich finde einen solchen Satz leider nicht.

Deshalb meine Frage: Warum gilt dieser Satz und unter welchem Stichwort kann ich diesen Satz z.B. im Buch Gewöhnliche Differentialgleichungen von Wolfgang Walter finden?

        
Bezug
stetige Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mo 13.03.2006
Autor: SEcki


> Deshalb meine Frage: Warum gilt dieser Satz

Intuitiv gilt er, das gewöhnliche DGLs sich gut verhalten unter guten Anfangsbedingungen. Warum genau, zeigt dann der Beweis.

>  und unter
> welchem Stichwort kann ich diesen Satz z.B. im Buch
> Gewöhnliche Differentialgleichungen von Wolfgang Walter
> finden?

Als der Beweis steht in diesem Buch, musst du im inhaltsverzeichnis mal suchen, oder mal unter Abhängigkeit, stetige Abhängikeit nachschlagen.

SEcki

Bezug
        
Bezug
stetige Abhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Di 28.03.2006
Autor: topotyp

Dieser Satz gilt erstmal!!
Der Beweis dazu ist aber hochgradig nichttrivial.
Der Satz sollte unter "stetige Abhängigkeit von den Anfangswerten"
laufen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]