www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - simultane Dialogisierung
simultane Dialogisierung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

simultane Dialogisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 12.08.2014
Autor: manmath

Aufgabe
aus einem Skript:
Sind M und A beliebige symmetrische Matritzen und ist M positiv definit, so existiert stets eine nichtsinguläre Matrix G, so dass beide Matrizen M und A diagonalisiert werden können; G kann so gewählt werden, dass die Diagonalmatrix zu M die Eineitsmatrix I ist, es gilt dann:
^{t}G  M  G = I und ^{t}G A  G = D
sowie A G = M G D
(sorry das hochgestellte t (transponiert) vor G funktioniert hier nicht, unten aber)
Schreiben wir die Matrix G mittels ihrer Spalten als G = [mm] (g^{1} [/mm] ... [mm] g^{n}), [/mm] dann können die vorigen Gleichungen geschrieben werden als:
[mm] ^{t}g^{k}M g^{j} [/mm] =  [mm] \delta_{kj} [/mm] und [mm] Ag^{j}=\lambda_{j}M g^{j} [/mm]

Nur eine Frage zur letzten Zeile: wie kommt man von den Beziehungen zwischen den Matrizen M, A und G zu der Darstellung mittels Spaltenvektoren von G. Ich weiss nur, dass man Matrizenprodukte als Produkte von Zeilen- und Spaltenvektorenvektoren darstellen kann.

        
Bezug
simultane Dialogisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 16.08.2014
Autor: felixf

Moin!

> aus einem Skript:
>  Sind M und A beliebige symmetrische Matritzen und ist M
> positiv definit, so existiert stets eine nichtsinguläre
> Matrix G, so dass beide Matrizen M und A diagonalisiert
> werden können; G kann so gewählt werden, dass die
> Diagonalmatrix zu M die Eineitsmatrix I ist, es gilt dann:
>  ^{t}G  M  G = I und ^{t}G A  G = D
>  sowie A G = M G D
>  (sorry das hochgestellte t (transponiert) vor G
> funktioniert hier nicht, unten aber)
>  Schreiben wir die Matrix G mittels ihrer Spalten als G =
> [mm](g^{1}[/mm] ... [mm]g^{n}),[/mm] dann können die vorigen Gleichungen
> geschrieben werden als:
>  [mm]^{t}g^{k}M g^{j}[/mm] =  [mm]\delta_{kj}[/mm] und [mm]Ag^{j}=\lambda_{j}M g^{j}[/mm]
>  
> Nur eine Frage zur letzten Zeile: wie kommt man von den
> Beziehungen zwischen den Matrizen M, A und G zu der
> Darstellung mittels Spaltenvektoren von G. Ich weiss nur,
> dass man Matrizenprodukte als Produkte von Zeilen- und
> Spaltenvektorenvektoren darstellen kann.

Verwende dafuer die folgende Formel: ist $X$ eine Matrix mit den Zeilen [mm] $x_1, \dots, x_n$ [/mm] und ist $Y$ eine Matrix mit den Spalten [mm] $y_1, \dots, y_n$, [/mm] dann hat $X [mm] \cdot [/mm] Y$ in der Zeile $i$ und Spalte $j$ den Eintrag [mm] $x_i y_j$. [/mm]

Wenn du das (evtl. mehrmals) auf [mm] ${}^t [/mm] G M G = I$ sowie $A G = M G D$ anwendest (und verwendest, dass der $(i,j)$-Eintrag von $I$ gleich [mm] $\delta_{ij}$ [/mm] ist und $D$ offenbar eine Diagonalmatrix mit [mm] $\lambda_i$ [/mm] an der Stelle $(i, i)$), dann kommst du auf die Gleichungen.

LG Felix




Bezug
                
Bezug
simultane Dialogisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:43 So 17.08.2014
Autor: manmath

Wenn man weiss, dass $ [mm] x_i y_j [/mm] $ als Skalarprodukt der beiden Vektoren einen Eintrag liefert ist und dann mal die Produkte der beteiligten Matrizen als Spalten/Zeilen aufschreibt, kommt man zu dem Ergebnis.
Danke für die Antwort
LG manmath

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]