www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - schiefsymmetrische Matrix
schiefsymmetrische Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schiefsymmetrische Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 19:21 Mo 13.12.2004
Autor: IKE

Hallo,

ich komme bei einer Aufgabe nicht weiter, die da lautet:

Zu jeder schiefsymmetrischen Matrix A [mm] \in \IR^{3,3} [/mm] gibt es genau einen Vektor a [mm] \in \IR^{3} [/mm] mit A * x = a [mm] \times [/mm] x wobei a [mm] \times [/mm] x das Kreuzprodukt im [mm] \IR^{3} [/mm] darstellt.

ich bin dabei bis jetzt nur auf die Ide gekommen, das es vielleicht über die Determinante und das Kreuzprodukt klappen könnte. Kann ich die beiden denn einfach so gleichsetzten, oder ist das verboten??

Vielen Dank schonmal für die Hilfe.

mfg IKE

        
Bezug
schiefsymmetrische Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Mi 15.12.2004
Autor: Julius

Hallo IKE!

Eine schiefsymmetrische Matrix $A [mm] \in \IR^{3,3}$ [/mm] hat die Form

$A = [mm] \begin{pmatrix} 0 & -a_{12} & a_{13} \\ a_{12} & 0 & -a_{23} \\ -a_{13} & a_{23} & 0 \end{pmatrix}$. [/mm]

(Warum?)

Rechne jetzt mal $A [mm] \cdot [/mm] x$ aus.

Wie musst du nun $a$ setzen, damit dies gleich $a [mm] \times [/mm] x$ ist?

Liebe Grüße
Julius


Bezug
                
Bezug
schiefsymmetrische Matrix: Idee
Status: (Frage) beantwortet Status 
Datum: 15:31 Mi 15.12.2004
Autor: IKE

Hallo Julius,

naja also wenn ich dann A * x nehme kommt ja  [mm] \pmat{ 0 & -a_{12}x_{2} & a_{13}x{3} \\ a_{12}x{1} & 0 & -a_{23}x_{3} \\ -a_{13}x_{1} & a_{23}x_{2} & 0 } [/mm] raus. Und wenn ich dann halt für a= [mm] \vektor{a_{1} \\ a_{2} \\ a_{3} } [/mm] wähle und dann das Kreuzprodukt bilde, dann müsste es doch hinkommen meiner meinung nach. Oder habe ich da noch etwas vergessen, bzw einen Denkfehler mit drin??

mfg IKE


Bezug
                        
Bezug
schiefsymmetrische Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Mi 15.12.2004
Autor: Julius

Hallo IKE!

Also, das stimmt vorne und hinten nicht. Erstens muss $A [mm] \cdot [/mm] x$ ein Vektor sein und keine $3 [mm] \times [/mm] 3$-Matrix. Zweitens muss man $a$ anders wählen, schließlich müssen dort irgendwie die Koordinaten der Matrix $A$ (also [mm] $a_{12}$, $a_{13}$ [/mm] und [mm] $a_{23}$, [/mm] aber nicht notwendigerweise in dieser Reihenfolge) vorkommen.

Bitte ein neuer Versuch! :-)

Liebe Grüße
Julius

Bezug
                                
Bezug
schiefsymmetrische Matrix: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mi 15.12.2004
Autor: IKE

Hallo Julius,

also okay, das A * x ein Vektor der Form   [mm] a_{1}*x_{1}+a_{2}*x_{2}+......+a_{n}*x_{n} [/mm] ist habe ich nun rausbekommen, aber nun fehlt mir vollkommen eine Idee wie es denn mit a [mm] \times [/mm] x aussehen könnte.

mfg IKE

Bezug
        
Bezug
schiefsymmetrische Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 Mi 15.12.2004
Autor: IKE

Hallo nochmal,

vielen Dank für die Hilfestellung, bin nun mittlerweile drauf gekommen was falsh war und habe nun ein richtiges ergebnis raus.

mfg IKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]