www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - n Wörter , Anzahl
n Wörter , Anzahl < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n Wörter , Anzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Mi 23.04.2014
Autor: pc_doctor

Hallo,

folgendes Abzahlproblem:
a)

Ich habe ein Alphabet [mm] \summe_{}^{} [/mm] Stern  , dieses Alphabet ist die Menge der Wörter , die man aus den Buchstaben von [mm] \summe_{}^{} [/mm] bilden kann ( diese Info ist eigentlich nicht so wichtig, da sich die Aufgabe auf etwas anderes bezieht).

Ich soll jetzt berechnen, wie viele Wörter in [mm] \summe_{}^{} [/mm] Stern die Länge n haben bzw aus n Buchstaben bestehen.

Das ist für mich ein Abzählproblem und komme auf keinen Ansatz.


c) Hier soll ich berechnen, wie viele Palindrome die Länge n haben.


Ich habe versucht, das mit einem Beispiel {Hallo,Name} nachzuvollziehen, aber ich weiß nicht, wie ich das berechnen soll. Es ist zwar mehr Informatik, aber dieses Problem ist ein mathematisches..

Ein kleiner Tipp wäre nett.

Vielen Dank im Voraus.

        
Bezug
n Wörter , Anzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 01:19 Do 24.04.2014
Autor: Teufel

Hi!

Ok, das ist alles etwas durcheinander. Du meinst sicher folgendes:
[mm] \Sigma [/mm] ist ein Alphabet (=endliche Menge) und [mm] \Sigma^* [/mm] ist die Menge aller Wörter (=Konkatenationen von Zeichen aus [mm] \Sigma) [/mm] über [mm] \Sigma. [/mm]

Wie viele Wörter haben jetzt Länge $n$? Sei dafür mal [mm] |\Sigma|=k, [/mm] d.h. dein Alphabet habe $k$ Zeichen. Dann sieh das mal so: Für das erste Zeichen hast du k Möglichkeiten, kein Problem. Für die ersten 2 Zeichen hast du wie viele Möglichkeiten? An der ersten Position $k$ und an der zweiten auch. Wie viele sind das insgesamt? Und wie sieht es dann für allgemeines $n$ aus?

b) Hier hast du weniger Möglichkeiten, denn das Zeichen an der Stelle 1 legt ja schond as Zeichen an der Stelle n fest (und umgekehrt). Das zeichen an der Stelle 2 muss mit dem Zeichen an der Stelle n-1 übereinstimmen usw.

Hilft dir das weiter?

Bezug
                
Bezug
n Wörter , Anzahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Do 24.04.2014
Autor: pc_doctor

Hallo,
ja , vielen Dank, deine Antwort hat mir weitergeholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]