www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - maximale Potenz
maximale Potenz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maximale Potenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:15 Mi 30.12.2009
Autor: Unk

Aufgabe
Das Lemma von Legendre besagt:
[mm] \omega_{p}(n!)=\lfloor\frac{n}{p}\rfloor+\lfloor\frac{n}{p^{2}}\rfloor+..., [/mm] wobei [mm] \omega_{p} [/mm] die größte p-Potenz liefert, die n! teilt.

Bsp.: [mm] \omega_{2}(3!)=\lfloor\frac{3}{2}\rfloor=1, [/mm] also [mm] 2^{1}|3!=6. [/mm] Zeigen Sie: Ist p eine Primzahl, so ist [mm] \omega_{p}(n!)\neq p\,\,\,\,\forall n\in\mathbb{N}. [/mm]
Zusatz: Man zeige, dass es neben p noch weitere Zahlen [mm] \in\mathbb{N} [/mm] gibt, die nicht als Werte [mm] \omega_{p}(n!) [/mm] auftreten können.

Hallo,

ich habe irgendwie keinen vernünftigen Ansatz gefunden, wie ich das zeigen kann, auch wenn ich schon so einiges ausprobiert habe.
Zunächst habe ich mehrere Fälle unterschieden, etwa p>n, p=n und p<n. Für p>n und p=n ist die Behauptung offensichtlich richtig. Nur für p<n will es mir nicht gelingen. Muss ich noch weitere Fälle unterscheiden? Wie kann ich mich der Sache annähern?

Was ist mit dem Zusatz? Ich denke mal, dass es kein n gibt, sodass [mm] \omega_p(n!)=n? [/mm] Mit dem Beweis hakts genauso. Gibt es noch weitere Zahlen, die nicht als maximale Potenz auftreten können?

Gruß Unk

        
Bezug
maximale Potenz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Do 31.12.2009
Autor: reverend

Hallo Unk,

nette Aufgabe. :-)
Für [mm] p\ge{n} [/mm] ist sie in der Tat trivial.

Also ein paar Tipps zu p<n und zum Zusatz:

1) Für welches größte N ist [mm] \omega_p(N)=p-1 [/mm] ?
2) Wie groß ist dann [mm] \omega_p(N+1) [/mm] ?
3) Der Zusatz ist schwieriger. Wahrscheinlich wird es genügen, zu zeigen, dass [mm] \omega_p [/mm] auch nicht die Werte p+k(p+1) für [mm] 0\le{k
Falls Du mit Beispielen hantieren willst, nimm [mm] \omega_5. [/mm] Es kann u.a. folgende Werte nicht annehmen:

[mm] 5,11,17,23,29;30,36,\cdots,60;61,...,91;92...;...(...)...153;154;155,... [/mm]

Na dann, viel Erfolg!
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]