www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - matrix bestimmen
matrix bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

matrix bestimmen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:41 Mi 21.12.2005
Autor: susi5555

Hey leute...
Habe mal eine frage...
und zwar:
Wie wird zb die matrix  [mm] (M_{E})^B [/mm] (F) gebildet,wenn E={(1,0,0),(0,1,0),(0,0,1)} und B= ={(1,2,3),(1,2,0),(1,0,0)} ist....
Bin bei diesem thema in der vorlesung nicht so ganz mitgekommen...
Danka
susi




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
matrix bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Mi 21.12.2005
Autor: Bastiane

Hallo!

> Hey leute...
>  Habe mal eine frage...
>  und zwar:
>  Wie wird zb die matrix  [mm](M_{E})^B[/mm] (F) gebildet,wenn
> E={(1,0,0),(0,1,0),(0,0,1)} und B=
> ={(1,2,3),(1,2,0),(1,0,0)} ist....
>  Bin bei diesem thema in der vorlesung nicht so ganz
> mitgekommen...
>  Danka
>  susi

Ich bin mir da auch nie ganz sicher (es sei denn, ich habe mich gerade erst intensiv damit befasst ;-)), aber ich glaube in deinem Fall ist es sehr einfach.

Du nimmst zuerst den ersten Vektor von E und schreibst ihn als Linearkombination der Vektoren aus B, in diesem Fall wäre es [mm] \vektor{1\\0\\0}=1*b_3=1*\vektor{1\\0\\0}. [/mm] Somit wäre der ersten Vektor der Matrix M: [mm] \vektor{0\\0\\1}. [/mm] Dann nimmst du [mm] \vektor{0\\1\\0} [/mm] und schreibst ihn ebenfalls als Linearkombination der Vektoren aus B - das wäre [mm] \vektor{0\\1\\0}=0,5*b_2-0,5*b_3=0,5*\vektor{1\\2\\0}-0,5*\vektor{1\\0\\0}. [/mm] Dann ist der zweite Vektor für M: [mm] \vektor{0\\0,5\\-0,5}. [/mm] (Es stehen also dann als Spaltenvektoren in M die Koeffzienten der jeweiligen Linearkombination.) Und das Gleiche machst du mit dem dritten Vektor.

Wenn da eine andere Basis statt E steht, geht es noch ein bisschen komplizierter, aber so schwierig ist das auch nicht.

Vielleicht hilft dir dieser Artikel hier - beachte auch den dort unten angegebenen Link zum Matheplaneten (mit den Beispielen dort hatte ich es nachher verstanden... ;-))

Viele Grüße
Bastiane
[cap]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]