www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - lokales Minimum in (0,0)
lokales Minimum in (0,0) < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokales Minimum in (0,0): Idee
Status: (Frage) beantwortet Status 
Datum: 17:52 Fr 30.04.2010
Autor: anouk

Aufgabe
Es sei f: [mm] R^2 \to [/mm] R, (x,y) [mm] \mapsto [/mm] f(x,y) = (y - [mm] x^2)(y [/mm] - [mm] 2.x^2) [/mm]
Man beweise:
(i) f hat in (0,0) kein lokales Minimum.
(ii) Für jedes (a,b) [mm] \in R^2\{(0,0)} [/mm] hat R [mm] \to [/mm] R, t [mm] \mapsto [/mm] f(ta, tb) in 0 ein lokales Minimum.  

Hallo zusammen!
Ich muss also diese zwei Behauptungen beweisen, aber ich bin schon in der ersten blockiert.
In der Tat bin ich wie folgt fortgegangen:
Ich habe alle zweite partielle Ableitungen von f im Punkt (0,0) gerechnet und habe ich so die Hesse Matrix:

H = [mm] \pmat{ 0 & 0 \\ 0 & 2 } [/mm]

Diese Matrix H ist positiv semidefinit und daraus folgt, dass f in (0,0) ein Minimum oder ein Sattelpunkt hat.
Ich berechne also: f(0, y) = [mm] y^2, [/mm]   f(x,0) = [mm] 2.x^4 [/mm] Und deshalb hat die Funktion f in (0,0) ein Minimum (weil die Exponenten gerade sind).
Wo ist mein Fehler?

Danke für die Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lokales Minimum in (0,0): Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Sa 01.05.2010
Autor: Cybrina

Hallo. Also ehrlich gesagt, ich weiß nicht, ob das so stimmt, wie ich das meine. Aber da bisher sonst noch niemand geantwortet hat...

Das Problem ist ja, dass [mm] f_{xx}=0 [/mm] und damit keine Aussage treffbar ist, was für eine Stelle vorliegt. Wenn du x oder y konstant hälst, hat die resultierende (2D)-Funktion ein Minimum. Aber man kann ja in eine andere Richtung "gehen". Wenn du z.B. um [mm] \epsilon>0 [/mm] in x-Richtung gehst, und um [mm] \bruch{3}{2}\epsilon^2 [/mm] in y-Richtung vom Koordinatenursprung weggehst, also in die Funktionsgleichung für [mm] (x+\epsilon) [/mm] statt x und [mm] (y+\bruch{3}{2}\epsilon^2) [/mm] statt y einsetzt, wird der Funktionswert negativ. Also kann bei (0,0) kein Minimum sein.
(Ich hab das vorher noch nie so betrachtet, finde es aber logisch :) Vlt. kann das noch wer bestätigen?)

Grüße,

Bezug
        
Bezug
lokales Minimum in (0,0): Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Sa 01.05.2010
Autor: leduart

Hallo
Cybrina hat recht, aber man kann auch einfach die Kurven [mm] y+x^2, y=2x^2, [/mm] und [mm] y=1.5x^2 [/mm] betrachten.
wie sieht die Flaeche laengs dieser Kurven aus?
b) betrachtet die flaeche, wenn du laengs Geraden durch (0,0) durchlaeufst.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]