www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - lineare abbildung + matrix
lineare abbildung + matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare abbildung + matrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:02 So 17.12.2006
Autor: roadrunnerms

hallo.

ich komme grad mit der aufgabe überhaupt nicht zurecht.:

Sei [mm] P_n [/mm] := { p: x -> [mm] \summe_{k=0}^{n} a_k x^k [/mm] | [mm] a_k \in \IR [/mm] , k = o,..,n}
die Menge aller reellen Polynome p vom Grad kleiner gleich n und p´die Ableitung von p.
zeigen sie , dass die Ableitung p->p´ linear ist und berechnen sie deren darstellbare matrix bezüglich der Basis [mm] (1,x,x²,...,x^n) [/mm]

danke für die hilfe

        
Bezug
lineare abbildung + matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 So 17.12.2006
Autor: DaMenge

Hi,

wenn p(x) ein allgemeines Polynom vom Grad kleiner gleich n ist, dann weißt du schon, wie p'(x) aussieht, oder?

für linearität musst du zeigen:
$(p(x)+q(x))'=p'(x)+q'(x)$
und
[mm] $(\lambda*p(x))'=\lambda [/mm] *p'(x)$

das schafft man alles ziemlich leicht per ausklammern...
(wenn du die ableitungsregeln kennst)

und zur darstellungsmatrix sollte man sich folgenden Satz merken:
Die Bilder der Basisvektoren sind die Spalten der Darstellungsmatrix.
(jeweils in der Basisdarstellung!)

versuchst du dich mal?

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]