lineare Optimierung - Simplexm < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:37 So 02.07.2006 | Autor: | spawn85 |
Aufgabe | In einer Mensa werden die Essen 1 bis 4 auch zu Preisen von 1 bis 4 verkauft. Für die einzelnen Essen entstehen Personalkosten , Wareneinsatz und sonstige Sachkosten in der in folgender Tabelle angegebenen Höhe, wobei diese Kosten insgesamt jeweils die angegebenen Fonds nicht überschreiten düfen:
Verkaufte Portionen essen1 essen2 essen3 essen4 fonds
Personalkosten p. Portion 1 2 2 2 3400
Wareneinsatz p. Portion 1 1 2 2 3000
Sonstige Sachkosten p. Portion 2 2 2 3 3900
Verkaufspreis je Portion 1 2 3 4
Unter den vorgegebenen Bedingungen soll der Umsatz (Erlös) maximiert werden.
Lösen die Sie Optimierungsaufgabe mit dem Simplexalgorithmus! Wie viele Portionen der einzelnen Essen sind für den maximalen Umsatz zu verkaufen, welcher Umsatz ist erzielbar? |
Ich bin mit der Simplex Methode leicht überfordert.
Als erstes habe ich die Zielfunktion aufgestellt:
[mm] x_1 [/mm] + [mm] 2x_2 [/mm] + [mm] 3x_3 [/mm] + [mm] 4x_4 [/mm] -> max
Dann die linearen Nebenbedingungen [mm] (x_1 [/mm] bis [mm] x_4 [/mm] stehen für Essen 1-4):
[mm] x_1 [/mm] + [mm] x_2 [/mm] + [mm] 2x_3 [/mm] + [mm] 2x_4 \le [/mm] 3400
[mm] x_1 [/mm] + [mm] x_2 [/mm] + [mm] 2x_3 [/mm] + [mm] 2x_4 \le [/mm] 3000
[mm] 2x_1 [/mm] + [mm] 2x_2 [/mm] + [mm] 2x_3 [/mm] + [mm] 3x_4 \le [/mm] 3900
Und noch die NNB:
[mm] x_1 \ge [/mm] 0, [mm] x_2 \ge [/mm] 0, [mm] x_3 \ge [/mm] 0, [mm] x_4 \ge [/mm] 0
Jetzt hab ich es in die Normalform überführt und die Schlupfvariablen [mm] x_5-x_7 [/mm] eingeführt:
z^* = - [mm] x_1 [/mm] - [mm] 2x_2 [/mm] - [mm] 2x_3 [/mm] - [mm] 4x_4 [/mm] -> min
[mm] x_1 [/mm] + [mm] x_2 [/mm] + [mm] 2x_3 [/mm] + [mm] 2x_4 [/mm] + [mm] x_5 [/mm] = 3400
[mm] x_1 [/mm] + [mm] x_2 [/mm] + [mm] 2x_3 [/mm] + [mm] 2x_4 [/mm] + [mm] x_6 [/mm] = 3000
[mm] 2x_1 [/mm] + [mm] 2x_2 [/mm] + [mm] 3x_3 [/mm] + [mm] 4x_4 [/mm] + [mm] x_7 [/mm] = 3900
Damit habe ich die Tableaus auf gestellt und erstmal [mm] u_1 [/mm] bis [mm] u_3 [/mm] entfernt. So das ich dann erstmal als Basisvariablen [mm] x_5, x_6, [/mm] und [mm] x_7 [/mm] habe und als Nichtbasisvariablen [mm] x_1 [/mm] bis [mm] x_4.
[/mm]
Nun habe ich mit dem Simplextableaus weiter gemacht. Leider bekomme ich dann als maximalen Gewinn 0. Irgendwas muss da leider nicht hinhauen.
Vielleicht wähle ich auch Pivotelement immer falsch? Nehme niedrigsten Wert in der Zielfunktion als Pivotspalten und niedrigsten Wert in der Spalten als Pivotzeile.
Hoffentlich kann mir jemand helfen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo!
Dass dein maximaler Gewinn 0 ist, lässt sich leicht erklären: Kein Essen erwirtschaftet Gewinn, sondern jeweil ein Minus von 3. Deshalb erhält man die Lösung, dass die Mensa besser gar kein Essen ausgeben sollte. Und das wäre ja auch in der Realität viel besser...
Gruß, banachella
|
|
|
|