www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - lineare Hülle/Unterraum
lineare Hülle/Unterraum < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Hülle/Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Mi 30.10.2013
Autor: kRAITOS

a) Gegeben seien [mm] v_1, [/mm] ... , [mm] v_l \in K^n. [/mm]

Die lineare Hülle von [mm] v_1, [/mm] ... , [mm] v_l [/mm] ist gegeben als

[mm] (v_1, [/mm] ... , [mm] v_l):= [/mm] { [mm] a_1*v_1 [/mm] + ... [mm] a_l*v_l [/mm] | [mm] a_1, [/mm] ... , [mm] a_l [/mm] } [mm] \subseteq K^n. [/mm]

Zeigen Sie, dass [mm] (v_1, [/mm] ... , [mm] v_l) [/mm] ein linearer Unterraum von [mm] K^n [/mm] ist.

b) Bestimmen Sie die linearen Unterräume von K².




Muss ich jetzt die Axiome eines Unterraumes nachweisen für a?

Also dass die 0 enthalten ist und Abgeschlossenheit bezüglich Multiplikation und Addition besteht? Wenn ja, kann ich da einfach beliebige Vektoren wählen oder gibt es da Einschränkungen?

Bei Teilaufgabe b habe ich keine Ahnung...


Danke schonmal für Denkstöße und Hilfe. :)

        
Bezug
lineare Hülle/Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Mi 30.10.2013
Autor: angela.h.b.


> a) Gegeben seien [mm]v_1,[/mm] ... , [mm]v_l \in K^n.[/mm]

>

> Die lineare Hülle von [mm]v_1,[/mm] ... , [mm]v_l[/mm] ist gegeben als

>

> [mm](v_1,[/mm] ... , [mm]v_l):=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ [mm]a_1*v_1[/mm] + ... [mm]a_l*v_l[/mm] | [mm]a_1,[/mm] ... , [mm]a_l[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> } [mm]\subseteq K^n.[/mm]

>

> Zeigen Sie, dass [mm](v_1,[/mm] ... , [mm]v_l)[/mm] ein linearer Unterraum
> von [mm]K^n[/mm] ist.

>

> b) Bestimmen Sie die linearen Unterräume von K².

>
>
>
>

> Muss ich jetzt die Axiome eines Unterraumes nachweisen für
> a?

Hallo,

ja, die drei Unterraumriterien.

>

> Also dass die 0 enthalten ist und Abgeschlossenheit
> bezüglich Multiplikation und Addition besteht?

Genau.

>Wenn ja,

> kann ich da einfach beliebige Vektoren wählen oder gibt es
> da Einschränkungen?

Du mußt das ganz allgemein lösen:

1. Der Nullvektor von [mm] K^n [/mm] ist in [mm](v_1,[/mm] ... , [mm]v_l)[/mm], denn ...

2. Seien [mm] v,w\in[/mm]   [mm](v_1,[/mm] ... , [mm]v_l)[/mm].

Dann gibt es Elemente [mm] a_1, ...,a_l, b_1,...,b_l [/mm] mit

v=...
w=....

Es ist v+w= ...=...=... [mm] \in[/mm]   [mm](v_1,[/mm] ... , [mm]v_l)[/mm], denn ...

3. Sei [mm] \lambda\in [/mm] K und [mm] \v\in[/mm]   [mm](v_1,[/mm] ... , [mm]v_l)[/mm].
Dann ist v= ...,

und es ist [mm] \lambda [/mm] v= ...=...=... [mm] \in[/mm]   [mm](v_1,[/mm] ... , [mm]v_l)[/mm], denn ...


So in diesem Stile ist die Aufgabe zu lösen.

LG Angela




>

> Bei Teilaufgabe b habe ich keine Ahnung...

>
>

> Danke schonmal für Denkstöße und Hilfe. :)


Bezug
                
Bezug
lineare Hülle/Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Fr 01.11.2013
Autor: kRAITOS

Danke für die Antwort.

Wie muss ich das denn bei Teilaufgabe b handhaben?

Bezug
                        
Bezug
lineare Hülle/Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 05:24 Sa 02.11.2013
Autor: angela.h.b.



> Wie muss ich das denn bei Teilaufgabe b handhaben?

Hallo,

was ist eigentlich in dieser Aufgabe K? Ein allgemeiner Körper, oder verbirgt sich etwas spezielles dahinter?

Naja, auf jeden Fall solltest Du die Dimension von [mm] K^2 [/mm] kennen. [mm] dim(K^2)=??? [/mm]

Welche Dimensionen können die Unterräume haben?
Wovon werden sie erzeugt?

LG Angela

Bezug
                                
Bezug
lineare Hülle/Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Sa 02.11.2013
Autor: kRAITOS

Also [mm] K^n [/mm] ist einfach nur ein Körper.

Na die Dimension von [mm] K^2 [/mm] = 2.

Erzeugt werden die Unterräume doch von linear unabhängigen Vektoren oder? Dementsprechend kann die Dimension von [mm] K^2 [/mm] doch auch 1 sein?

Bezug
                                        
Bezug
lineare Hülle/Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Sa 02.11.2013
Autor: angela.h.b.


> Also [mm]K^n[/mm] ist einfach nur ein Körper.

>

> Na die Dimension von [mm]K^2[/mm] = 2.

Hallo,

ja.
>

> Erzeugt werden die Unterräume doch von linear
> unabhängigen Vektoren oder? Dementsprechend kann die
> Dimension von [mm]K^2[/mm] doch auch 1 sein?

Die Dimension des [mm] K^2 [/mm] unverhandelbar =2.
Der Nullraum ist natürlich auch ein Unterraum.
Und die Unterräume der Dimension 1, wie sind die gemacht?

LG Angela

Bezug
                                                
Bezug
lineare Hülle/Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Sa 02.11.2013
Autor: kRAITOS

Die Unteräume der Dimension 1 sehen so aus:

[mm] \vektor{0 \\ y} [/mm] und [mm] \vektor{0 \\ y} [/mm] oder
[mm] \vektor{x \\ 0} [/mm] und [mm] \vektor{x \\ 0} [/mm]


Also quasi so, dass sich ein Vektor mithilfe eines Skalars als Vielfaches des anderen Vektoren darstellen lässt.

Also wären die Unterräume des [mm] K^2 [/mm]

[mm] \vektor{x \\ 0}, \vektor{0 \\ y} [/mm] und [mm] \vektor{0 \\ 0}? [/mm]

Bezug
                                                        
Bezug
lineare Hülle/Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 06:57 So 03.11.2013
Autor: angela.h.b.

Hallo!

> Die Unteräume der Dimension 1 sehen so aus:

>

> [mm]\vektor{0 \\ y}[/mm] und [mm]\vektor{0 \\ y}[/mm]

Darf man mal erfahren,was der Unterschied zwischen
[mm]\vektor{0 \\ y}[/mm] und [mm]\vektor{0 \\ y}[/mm] ist?

Du mußt Dich mit den Definitionen vertraut machen. Du zeigst mir hier irgendwelche Vektoren.
Unterräume aber sind gewisse Mengen.


>  oder
> [mm]\vektor{x \\ 0}[/mm] und [mm]\vektor{x \\ 0}[/mm]

>

>

> Also quasi so, dass sich ein Vektor mithilfe eines Skalars
> als Vielfaches des anderen Vektoren darstellen lässt.

Aha. Du willst mir vielleicht gerade sagen, daß es zwei eindimensionale Unterräume  des [mm] K^2 [/mm] gibt, nämlich den von
[mm] \vektor{1\\0} [/mm] erzeugten Raum
[mm] U:=\{x*\vektor{1\\0}|x\in K} [/mm] und den Raum
[mm] U':=\{y*\vektor{0\\1}|y\in K}. [/mm]

In der Tat sind dies Unterräume des [mm] K^2, [/mm] aber nicht die einzigen!
Jeder vom Nullvektor verschiedene Vektor des [mm] K^2 [/mm] erzeugt einen eindimensionalen Unterraum.
>

>[mm]\vektor{0 \\ 0}?[/mm]
Dies ist ein Vektor, kein Unterraum.
Der Unterraum ist [mm] :=\{\vektor{0 \\ 0}\}. [/mm]

Den zweidimensionalen Unterraum hast Du vergessen...

LG Angela

Bezug
                                                                
Bezug
lineare Hülle/Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 So 03.11.2013
Autor: kRAITOS

Hallo Angela,

entschuldige aber mit der Schreibweise bin ich noch nicht ganz so vertraut aber ich habe das gemeint, was du geschrieben hast.

Also insgesamt gibt es 4 Unterräume:

Die 3, die ich versucht habe, zu erklären und die du so schön in eine Menge geschrieben hast und den zweidimensionalen.

U:= { [mm] \vektor{x \\ 0} [/mm] |x [mm] \in [/mm] K }
U´:= { [mm] \vektor{0 \\ y} [/mm] |y [mm] \in [/mm] K }
U´´:= { [mm] \vektor{0 \\ 0} [/mm] }
U´´´:= { [mm] \vektor{x \\ y} [/mm] |x,y [mm] \in [/mm] K }

Muss ich dafür noch einen Beweis erbringen oder kann ich das einfach so behaupten?

Bezug
                                                                        
Bezug
lineare Hülle/Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 So 03.11.2013
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> Also insgesamt gibt es 4 Unterräume:

Hallo,

Du solltest nochmal gründlich lesen, was ich Dir zu den eindimensionalen Unterräumen gesagt habe. Es gibt mehr davon.

>

> Die 3, die ich versucht habe, zu erklären und die du so
> schön in eine Menge geschrieben hast und den
> zweidimensionalen.

>

> U:= { [mm]\vektor{x \\ 0}[/mm] |x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K }

> U´:= { [mm]\vektor{0 \\ y}[/mm] |y [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K }

> U´´:= { [mm]\vektor{0 \\ 0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

> U´´´:= { [mm]\vektor{x \\ y}[/mm] |x,y [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

K }
>

> Muss ich dafür noch einen Beweis erbringen oder kann ich
> das einfach so behaupten?

Im Prinzip ist nichts weiter zu tun, denn daß die lineare Hülle von Vektoren des K^2 ein UVR des K^2 ist, hast Du zuvor gezeigt, und Du betrachtest hier ja die linearen Hüllen von 0,1,2 linear unabhängigen Vektoren.

LG Angela

Bezug
                                                                                
Bezug
lineare Hülle/Unterraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 So 03.11.2013
Autor: kRAITOS

Dann danke ich dir für deine Hilfe. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]