www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - lin. approximation
lin. approximation < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin. approximation: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:33 Do 26.03.2009
Autor: AriR

hey leute

wenn man eine fkt f lin in [mm] x_o [/mm] approximiert durch [mm] f(x)=f(x_0)+f'(x_0)*(x-x_0)+g(x) [/mm]

wobei g der fehlerterm sein soll, dann heißt es ja, dass g schneller als lin gegen 0 gehen muss.

stellt man [mm] f(x)=f(x_0)+f'(x_0)*(x-x_0)+g(x) [/mm] um so erhält man

[mm] g(x)=f(x)-f(x_0)-f'(x_0)*(x-x_0) [/mm] und man sieht dass g(x) in der größenordnug von f liegt falls die größenordnung [mm] f\ge1, [/mm] da [mm] f(x_0) [/mm] sowie [mm] f'(x_0) [/mm] konstanten sind und [mm] (x-x_0) [/mm] die größenordnung 1 hat und somit kleiner als die von f ist (da sie kleiner ist wirkt sich das nicht auf das grobe verhalten von f aus)


was passiert aber, wenn man zB die wurzelfunktion [mm] f(x)=x^\bruch1{2} [/mm] lin approximieren möchte. die größenordnung des fehlerterms müsste doch nach obiger rechnung lin sein (f hat die größenordnung [mm] \bruch1{2} [/mm] und es wird ein lin term abgezogen, also ist das ganze wieder linear) und somit würde der fehler auch lin gegen 0 gehen und NICHT schneller als linear wie eigentlich gefordert.


kann mir da vllt einer von euch weiterhelfen

gruß ;)

        
Bezug
lin. approximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:04 Do 09.04.2009
Autor: felixf

Hallo Ari

> wenn man eine fkt f lin in [mm]x_o[/mm] approximiert durch
> [mm]f(x)=f(x_0)+f'(x_0)*(x-x_0)+g(x)[/mm]
>  
> wobei g der fehlerterm sein soll, dann heißt es ja, dass g
> schneller als lin gegen 0 gehen muss.
>  
> stellt man [mm]f(x)=f(x_0)+f'(x_0)*(x-x_0)+g(x)[/mm] um so erhält
> man
>  
> [mm]g(x)=f(x)-f(x_0)-f'(x_0)*(x-x_0)[/mm]

Ja.

> und man sieht dass g(x) in
> der größenordnug von f liegt falls die größenordnung [mm]f\ge1,[/mm]
> da [mm]f(x_0)[/mm] sowie [mm]f'(x_0)[/mm] konstanten sind und [mm](x-x_0)[/mm] die
> größenordnung 1 hat und somit kleiner als die von f ist (da
> sie kleiner ist wirkt sich das nicht auf das grobe
> verhalten von f aus)

Was genau verstehst du hier unter der Groessenordnung?

> was passiert aber, wenn man zB die wurzelfunktion
> [mm]f(x)=x^\bruch1{2}[/mm] lin approximieren möchte. die
> größenordnung des fehlerterms müsste doch nach obiger
> rechnung lin sein (f hat die größenordnung [mm]\bruch1{2}[/mm] und
> es wird ein lin term abgezogen, also ist das ganze wieder
> linear) und somit würde der fehler auch lin gegen 0 gehen
> und NICHT schneller als linear wie eigentlich gefordert.

Lass dir mal von einem Programm $f(x)$, [mm] $f(x_0) [/mm] + (x - [mm] x_0) f'(x_0)$ [/mm] und $g(x)$ fuer verschiedene Wahlen von [mm] $x_0$ [/mm] zeichnen und guck dir an was passiert.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]