www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - lim int.cos(x/n)*f(x)=int.f(x)
lim int.cos(x/n)*f(x)=int.f(x) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lim int.cos(x/n)*f(x)=int.f(x): Merkwürdiger Beweis
Status: (Frage) beantwortet Status 
Datum: 12:51 Do 07.05.2009
Autor: ZodiacXP

Aufgabe
Zeigen Sie
$ [mm] \limes_{n\rightarrow\infty} \integral_{a}^{b}{cos\pmat{\bruch{x}{n}}*f(x) dx} [/mm] = [mm] \integral_{a}^{b}{f(x) dx} [/mm] $

Bin hier nur Aufgaben am machen, weil bald die Modulabschlussprüfung ansteht. Diesmal ein Beweis, den ich so vorgefunden habe:

$ [mm] \limes_{n\rightarrow\infty} \integral_{a}^{b}{cos\pmat{\bruch{x}{n}}*f(x) dx} [/mm] = [mm] \integral_{a}^{b}{f(x) dx} [/mm] $

[mm] $\gdw \limes_{n\rightarrow\infty} \integral_{a}^{b}{cos\pmat{\bruch{x}{n}}*f(x) dx} [/mm] - [mm] \integral_{a}^{b}{f(x) dx} [/mm] = 0 $

[mm] $\gdw \limes_{n\rightarrow\infty} \integral_{a}^{b}{\pmat{cos\pmat{\bruch{x}{n}}*f(x) - f(x)} dx} [/mm] = 0 $

[mm] $\gdw \limes_{n\rightarrow\infty} \integral_{a}^{b}{f(x)*\pmat{cos\pmat{\bruch{x}{n}}-1} dx} [/mm] = 0 $

Gilt insbesondere dann, wenn $ [mm] cos\pmat{\bruch{x}{n}}-1 [/mm] = 0 $

$ [mm] \limes_{n\rightarrow\infty} cos\pmat{\bruch{x}{n}}-1 [/mm] = cos(0)-1 = 1-1 = 0 $

Darf man einfach die Annahme cos(x/n) - 1 = 0 aus dem Integral heraus nehmen und den Limes vorne dran hängen?
Der Beweis scheint mir ein bisschen komisch zu sein.

        
Bezug
lim int.cos(x/n)*f(x)=int.f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Do 07.05.2009
Autor: fred97

Zeige, dass die Funktionenfolge $(cos(x/n))$ auf [a,b] gleichmäßig gegen 1 konvergiert.

Dann konvergiert $(cos(x/n)f(x))$  auf [a,b] gleichmäßig gegen f.

Damit darfst Du Integral und [mm] \limes_{n\rightarrow\infty} [/mm] vertauschen

Noch einfacher gehts mit Konvergenzsätzen der Lebesgueschen Integrationstheorie (falls Ihr das hattet)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]