komplexe Zahlen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:35 So 22.04.2007 | Autor: | Jenny85 |
Aufgabe | Zeigen Sie, dass drei paarweise verschiedene komplexe Zahlen genau dann die Eckpunkte eines gleichseitigen Dreiecks bilden, wenn [mm] a^2+b^2+c^2=ab+bc+ca [/mm] |
Moin!
Habe eine Idee zu der Aufgabe, weiß aber net ob ich damit irgendwie weiterkomme. habe mir überlegt, dass ich anfange mit |b-a|=|c-a|=|c-b|, wobei a,b und c die Eckpunkt des Dreiecks sind.
Ein weiterer Ansatz wäre über den 60° Winkel in den Dreiecken, habe aber keine nette Formel gefunden wo mir das was nützen würde und ich somit auf die obige Aussage komme.
Würde mich über Hilfe freuen
Mit freundlichen Grüßen
jenny
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Um den Rechenaufwand zu verringern, würde ich das Dreieck erst geschickt transformieren.
1. Verschiebung in den Ursprung durch Subtraktion von [mm]a[/mm]
[mm]a' = 0 \, , \ \ b' = b-a \, , \ \ c' = c-a[/mm]
2. Drehstreckung mittels Division durch [mm]b' = b-a[/mm]
[mm]a'' = 0 \, , \ \ b'' = 1 \, , \ \ c'' = \frac{c-a}{b-a}[/mm]
Eine Verschiebung ist eine Kongruenzabbildung, eine Drehstreckung immerhin noch eine Ähnlichkeitsabbildung. Das Dreieck mit den Ecken [mm]a,b,c[/mm] ist also dann und nur dann gleichseitig, wenn das Dreieck mit den Ecken [mm]a'',b'',c''[/mm] es ist. Letzteres ist aber genau dann der Fall, wenn die Strecke von 0 bis [mm]c''[/mm] in einem 60°-Winkel zur positiven reellen Achse steht (nach oben oder unten) und die Länge 1 besitzt, wenn also mit anderen Worten [mm]c''[/mm] eine primitive sechste Einheitswurzel ist. Die sechsten Einheitswurzeln sind aber gerade die Nullstellen des Polynoms [mm]z^6 - 1 = \left( z^3 - 1 \right) \left( z^3 + 1 \right)[/mm]. Da [mm]c''[/mm] aber keine dritte Einheitswurzel sein kann, muß es Nullstelle des zweiten Faktors [mm]z^3 + 1 = (z + 1) \left( z^2 - z +1 \right)[/mm] sein, folglich den quadratischen Faktor [mm]z^2 - z + 1[/mm] zum Verschwinden bringen:
[mm](c'')^2 - c'' + 1 = 0[/mm]
|
|
|
|