www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - irreduzible Polynome
irreduzible Polynome < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mi 11.01.2006
Autor: dauwer

Aufgabe
Bestimmen Sie alle irreduziblen Polynome $f(X) [mm] \in \IF_{2}[X]~mit~Grad~f(X) \le [/mm] 4$ .

Ich habe diese Aufgabe zu lösen und habe leider nicht ein mal einen Ansatz gefunden um sie zu lösen. Ich hoffe ihr könnt mir bei der Lösung helfen.

Danke,

dauwer

        
Bezug
irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Mi 11.01.2006
Autor: Leopold_Gast

1. Alle Polynome vom Grad 1 sind irreduzibel.

2. Wenn ein quadratisches Polynom reduzibel ist, muß es in zwei Linearfaktoren zerfallen und damit Nullstellen besitzen. Die irreduziblen quadratischen Polynome sind also diejenigen ohne Nullstellen.

3. Ein reduzibles kubisches Polynom muß aus Gradgründen mindestens einen Linearfaktor abspalten. Irreduzibel sind also diejenigen kubischen Polynome, die keine Nullstellen besitzen.

4. Wenn ein Polynom vom Grad 4 eine Nullstelle besitzt, so ist es reduzibel. Besitzt es keine Nullstellen, so könnte es noch in zwei irreduzible quadratische Polynome zerfallen. Die wurden aber schon in 2. bestimmt. Wenn einem nichts Besseres einfällt, könnte man die Polynomdivision durch jedes dieser irreduziblen quadratischen Polynome durchführen und schauen, ob sie aufgeht. Falls sie niemals aufgeht, ist das Polynom vom Grad 4 irreduzibel.

Fangen wir einmal an. Es gibt 4 quadratische Polynome

[mm]X^2, \ X^2+1, \ X^2 + X, \ X^2 + X + 1[/mm]

Als Beispiel nehmen wir [mm]X^2 + 1[/mm]. Wegen [mm]1^2 + 1 = 0[/mm] besitzt es eine Nullstelle, ist also reduzibel.

Und jetzt bist du dran ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]