www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - invertierbare Matrizen
invertierbare Matrizen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

invertierbare Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Mo 03.05.2010
Autor: Sabine_B.

Aufgabe
Sei p eine Primzahl. Man beweise, dass [mm] (p^{2} [/mm] - [mm] 1)(p^{2} [/mm] - p) die Anzahl der 2 x 2 invertierbaren Matrizen über $ [mm] \IZ [/mm] p $
ist.

Hallo Leute,
ich weiß leider überhaupt nicht, wie ich an diese Aufgabe rangehen soll :-(
Habt ihr vllt ein paar Tipps oder Lösungsvorschläge?
Vielen Dank schonmal

Liebe Grüße
Sabine

        
Bezug
invertierbare Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:28 Mo 03.05.2010
Autor: mathfunnel

Hallo Sabine,

die beiden Spalten einer invertierbaren [mm] $2\times [/mm] 2$ Matrix über $Z/pZ$ müssen eine Basis des  Vektorraums [mm] $(Z/pZ)^2$ [/mm] sein. Damit ist einmal der Nullvektor als Spalte ausgeschlossen und die Spalten dürfen nicht Vielfache voneinander sein.

Gruß mathfunnel


Bezug
                
Bezug
invertierbare Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:23 Mi 05.05.2010
Autor: Sabine_B.

Danke erstmal für deine schnelle Antwort, aber ich habe leider noch ein paar Fragen dazu..
also dass der Nullvektor rausfällt (dann wäre die Determinante = 0 --> Matrix nicht invertierbar). Aber was soll mir das denn über den Zusammenhang von $ [mm] (p^{2} [/mm] $ - $ [mm] 1)(p^{2} [/mm] $ - p) und den 2x2 Matrizen sagen?! Sorry, aber iwie verstehe ich deine Antwort noch nicht so ganz :-(

Liebe Grüße
Sabine

Bezug
                        
Bezug
invertierbare Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:55 Mi 05.05.2010
Autor: felixf

Hallo Sabine!

> Danke erstmal für deine schnelle Antwort, aber ich habe
> leider noch ein paar Fragen dazu..
>  also dass der Nullvektor rausfällt (dann wäre die
> Determinante = 0 --> Matrix nicht invertierbar).

Ja.

> Aber was
> soll mir das denn über den Zusammenhang von [mm](p^{2}[/mm] -
> [mm]1)(p^{2}[/mm] - p) und den 2x2 Matrizen sagen?! Sorry, aber iwie
> verstehe ich deine Antwort noch nicht so ganz :-(

Er hat dir gesagt, wie du die Matrizen zaehlen kannst.

In der ersten Spalte hast du ziemliche Wahlfreiheit, du kannst alles ausser den Nullvektor nehmen? Und im [mm] $(\IZ/p\IZ)^2$ [/mm] gibt es doch [mm] $p^2$ [/mm] Elemente, also hast du fuer die erste Spalte [mm] $p^2 [/mm] - 1$ Moeglichkeiten.

Wieviel hast du nun fuer die zweite Spalte (nachdem du die erste fest gewaehlt hast)?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]