injektiv, surjektiv, bijektiv < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | 1) g [mm] \circ [/mm] f soll bijektiv sein, aber weder f noch g sollen bijektiv sein
2) für welche a,b,c [mm] \in \IR [/mm] ist die abbildung f: [mm] \IR \to \IR, [/mm] gegeben durch x [mm] \mapsto ax^{2} [/mm] + bx + c injektiv bzw surjektiv |
1) müssen die anfangs bedingungen der funktionen f und g erhalten bleiben?
z. b. [mm] f(x)=\wurzel{x} [/mm] und [mm] g(x)=x^{2} [/mm] , dann ist g [mm] \circ [/mm] f = x
damit wäre die aufgabe erfüllt da f und g nich bijektiv sind g [mm] \circ [/mm] f schon
allerdings wenn die anfangsbedingungen noch gelten für f(x) muss x > 0 (wurzel aus neg. zahlen usw.) sein und somit wäre g [mm] \circ [/mm] f nich mehr bijektiv.
wenn ich mit meiner vermutung recht habe und g [mm] \circ [/mm] f nicht bijektiv ist habt ihr viell ne lösung
2) kann ich bei dieser aufgabenstellung auch an den [mm] \IR [/mm] rumbasteln [mm] (\IR^{+} [/mm] usw.) oder muss ich die a,b,c verändern aber dann bleibt das ja immer eine parabel und wird nie inj. bzw surj.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:59 Mi 22.10.2008 | Autor: | pelzig |
> 1) g [mm]\circ[/mm] f soll bijektiv sein, aber weder f noch g sollen
> bijektiv sein
> 2) für welche a,b,c [mm]\in \IR[/mm] ist die abbildung f: [mm]\IR \to \IR,[/mm]
> gegeben durch x [mm]\mapsto ax^{2}[/mm] + bx + c injektiv bzw
> surjektiv
> 1) müssen die anfangs bedingungen der funktionen f und g
> erhalten bleiben?
> z. b. [mm]f(x)=\wurzel{x}[/mm] und [mm]g(x)=x^{2}[/mm] , dann ist g [mm]\circ[/mm] f
> = x
> damit wäre die aufgabe erfüllt da f und g nich bijektiv
> sind g [mm]\circ[/mm] f schon
> allerdings wenn die anfangsbedingungen noch gelten für
> f(x) muss x > 0 (wurzel aus neg. zahlen usw.) sein und
> somit wäre g [mm]\circ[/mm] f nich mehr bijektiv.
> wenn ich mit meiner vermutung recht habe und g [mm]\circ[/mm] f
> nicht bijektiv ist habt ihr viell ne lösung
Löse dich mal von den reellen Zahlen. Abbildungen können so viel einfacher sein. Was sagst du denn zu folgendem Bildchen:
[Dateianhang nicht öffentlich]
> 2) kann ich bei dieser aufgabenstellung auch an den [mm]\IR[/mm]
> rumbasteln [mm](\IR^{+}[/mm] usw.) oder muss ich die a,b,c verändern
> aber dann bleibt das ja immer eine parabel und wird nie inj. bzw surj.
Für [mm] $a\ne [/mm] 0$ ist das sicherlich so.... aber was ist für $a=0$?
Gruß, Robert
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
1)das bils versteh ich ja aber das problem is ja das ich für [mm] \wurzel{x} [/mm] keine neg zahlen einsetzten kann auch wenn ich es dannach quadriere deshalb denke ich ja das g [mm] \circ [/mm] f nicht bijektiv ist da nich alle y abgebildet werden können aber selber find ich keine passende lösung
2) für a=0 und b [mm] \not= [/mm] 0 ist die fkt. bijektiv das war ja auch nicht die frage asso iste es bei der aufgabe möglich an den [mm] \IR [/mm] etwas zu verändern und nich als reine [mm] \IR [/mm] zu lassen
|
|
|
|
|
Hallo!
Bei deinen Aufgaben kommt es ganz stark auf den Definitionsbereich/Wertebereich deiner Funktionen an. Dein gegebenes Beispiel mit den Wurzeln und Quadraten funktioniert nicht, wenn du nicht ganz klar Definitions- und Wertebereiche hinschreibst und die dann zusammenpassen. Es geht ja gerade darum, dass man zwei Funktionen
[mm] f:D\to [/mm] W nicht bijektiv
g:W [mm] \to [/mm] Y nicht bijektiv
hat, wobei aber dann
f [mm] \circ [/mm] g :D [mm] \to [/mm] Y bijektiv
ist. Ein mögliches Beispiel von unendlich vielen ist das von pelzig, ich würde behaupten deins geht mit der obigen Genauigkeit genauso gut, egal ob die Wurzel nun nur negative x zulässt oder nicht: Bei der Komposition kommt es letztendlich nur drauf an, dass Definitionsbereich der einen mit Wertebereich der anderen Funktion übereinstimmt.
Zu b)
Verstehe ich ehrlich gesagt die Frage nicht. Aber es ist dir ganz klar eine Funktion [mm] f:\IR \to \IR [/mm] vorgegeben. D.h. Definitionsbereich und Wertebereich sind [mm] \IR. [/mm] Deine Funktion ist nur bijektiv, wenn sie den gesamten Def. und den gesamten W. abdeckt. Jede "normale" quadratische Funktion kann bei diesen Voraussetzungen deswegen nie bijektiv sein, weil sie immer ein unendlich großes Stück vom Wertebereich [mm] \IR [/mm] nicht durchläuft.
Solche Funktionen sind dann eigentlich gar nichts. Sie sind nicht injektiv, weil jeder y-Wert durch zwei verschiedene x-Werte erreicht werden kann, sie sind nicht surjektiv, weil nicht alle y-Werte erreicht werden.
Wie du richtig geschrieben hast, ist bei a = 0 und [mm] b\not= [/mm] 0 aber jede Funktion (linear) bijektiv. Was ist für a = b = 0 ?
Stefan.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:15 Mi 22.10.2008 | Autor: | pelzig |
Das Bild war auch eher so gemeint:
Nimm die Menge [mm] $X:=\{0\}$ [/mm] und [mm] $Y:=\{0,1\}$ [/mm] mit den Abbildungen [mm] $f:X\to [/mm] Y$ mit $f(0):=0$ und [mm] $g:Y\to [/mm] X$ mit $g(0):=g(1):=0$. Dann ist offensichtlich [mm] $g\circ f=\operatorname{id}_X$ [/mm] bijektiv, aber $f$ ist nicht surjektiv und $g$ nicht injektiv. Dies ist das einfachst mögliche Beispiel, und sowas erfreut Mathematiker immer...
Gruß, Robert
|
|
|
|
|
Ich habe die gleiche Aufgabe und meiner Meinung nach kann man bei 2) nicht an der Definitionsmenge und der Bildmenge rummanipulieren.
zu 1) Genaugenommen funktioniert die Hindereinanderausführung von $ [mm] f(x)=\wurzel{x} [/mm] $ und $ [mm] g(x)=x^{2} [/mm] $ meiner Meinung nach nicht, da ja die Wurzel nur positive x zulässt. D.h. ich kann nur positive x durch g [mm] \circ [/mm] f darstellen.
Eine konkrete Lösung für 1) habe ich bis jetzt jedoch auch nicht.
|
|
|
|
|
möchte mich bei allen beteiligten bedanken glaub ich habs jetzt
|
|
|
|