www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - gleichmäßig stetig
gleichmäßig stetig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gleichmäßig stetig: Grenzwert
Status: (Frage) beantwortet Status 
Datum: 22:28 Mo 14.12.2009
Autor: Zecha

Aufgabe
Sei f:(0,1] [mm] \to \IR [/mm] eine gleichmäßig stetige Funktion.
(i) Sei [mm] (X_{n})_{n\in\IN} [/mm] eine Folge in (0,1],  die in [mm] \IR [/mm] (und damit in [0,1])konvergiert. Zeigen Sie, dass [mm] \limes_{n\rightarrow\infty} f(X_{n}) [/mm] existiert.
(ii) Zeigen Sie, dass der Grenzwert [mm] \limes_{x\rightarrow 0+} [/mm] f(x) =f(0+) existiert, d.h. f ist stetig nach [0,1] fortsetzbar.

Abend,
Ich muss die Aufgabe lösen und habe keine ahnung wie...
Hoffe mir kann geholfen werde.
Freu mich auch über Denkanstöße bzw. kleine Ansetzte.

Gruß Zecha



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
gleichmäßig stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Mo 14.12.2009
Autor: leduart

Hallo
Was bedeuted denn glm. Stetigkeit? Schreib die Def. davon auf. dann was heisst es [mm] f(x_n) [/mm] konvergiert?
Dann hast du nen Anfang und solltest weiter kommen.
Das ist immer dasselbe: Definition genau aufschreiben, Behauptung genau auf schreiben, dann hat man schon die halbe Aufgabe.
Gruss leduart

Bezug
                
Bezug
gleichmäßig stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Mo 14.12.2009
Autor: Zecha

Hi Leduart,
Ich habe mir die definitionen auch schon angesehen, komm aber nicht weiter....
Ich weiß nicht wie ich die Def. zum Grenzwert bringen kann...

Bezug
                        
Bezug
gleichmäßig stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mo 14.12.2009
Autor: pelzig

Gleichmäßig stetige Funktionen bilden Cauchy-Folgen auf Cauchy-Folgen ab...

Gruß, Robert

Bezug
                                
Bezug
gleichmäßig stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:05 Mo 14.12.2009
Autor: Zecha

Das ist Klasse^^ Jetzt komm ich doch erstmal weiter. Werde die Aufgabe zwar bestimmt nicht komplett lösen können aber immerhin ein Anfang.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]