geometrische Interpretation < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:02 Do 28.05.2009 | Autor: | eppi1981 |
Aufgabe | Seien die Mengen
[mm] A:=\{z|z\in\IC,Im((1+i)z)>0 und |z|\le1)\}\subset\IC
[/mm]
[mm] B:=\{z|z\in\IC,Re(\bruch{-1}{z})\le1\}\subset\IC
[/mm]
gegeben. Geben Sie die geometrische Interpretation auf der komplexen Zahlenebene der Menge A, B und [mm] A\capB [/mm] an. Begründen Sie Ihre Antwort genau. |
Ich habe folgendes für A berechnet aber bin nicht sicher.
Im((1+i)z)>0 [mm] \Rightarrow [/mm] Im((1+i)(x+yi)) >0 [mm] \Rightarrow [/mm] Im(x-y+(x+y)i) >0 [mm] \Rightarrow [/mm] x+y >0 [mm] \Rightarrow [/mm] y>-x (eine gerade Linie)
[mm] |z|\le1 \Rightarrow \wurzel{x^2+y^2} \le1 \Rightarrow x^2+y^2\le1 [/mm] (ein Kries mit Radius [mm] \le1
[/mm]
|
|
|
|
Hallo,
eine Idee zu A:
Du ermittelst x+y>0 als Bedingung, d.h. das wäre zunächst einmal die halbe xy-Ebene, und zwar oberhalb der Geraden y=-x.
Die zweite Einschränkung bedeutet, dass [mm] x^{2}+y^{2} \le [/mm] 1 sein muss, d.h. das sind alle Punkte, die weniger als 1 vom Ursprung weg liegen, also ein Kreis um den Ursprung. Da die in der ersten Einschränkung ermittelte Grenzgerade durch den Ursprung verläuft, liefert dir die erste Menge also einen Halbkreis (ohne die Begrenzungslinie, da x+y>0 sein soll).
Und noch Gedanken zur B:
das machst du im Prinzip genauso, setzt also z=x+iy ein, dann machst du den Nenner reell (3. binomische Formel), bekommst so den Realteil (da könnte [mm] \bruch{-x}{x^{2}+y^{2}} [/mm] rauskommen, wenn ich mich auf die Schnelle nicht vertan habe). Das muss kleiner als 1 sein, das löst du nach y auf und bekommst so zwei begrenzende Funktionsgraphen (weil du dann [mm] y^{2}=.... [/mm] stehen hast und du dann beim Wurzelziehen die + und die - Lösung bekommst) und das gesuchte Gebiet liegt dann eben entsprechend dieser Grenzlinien dazwischen oder darüber oder darunter - dazu musst du nur das "kleiner" bzw. "größer" Zeichen richtig interpretieren .
Gruß,
weightgainer
|
|
|
|