www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - gegen 0?
gegen 0? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gegen 0?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Sa 19.06.2010
Autor: rml_

Aufgabe
[mm] \limes_{n \to \infty} \bruch{n!}{n^n} [/mm] => 0

hallo,

wenn ich das benutzen will, muss ich das erst beweisen oder kann ich das einfach so benutzten und wenn ich es beweisen muss, wie sieht dieser beweis aus?

        
Bezug
gegen 0?: Bruch zerlegen
Status: (Antwort) fertig Status 
Datum: 13:43 Sa 19.06.2010
Autor: Loddar

Hallo rml!


Wenn ihr in der Vorlesung das Ergebnis noch nicht verwendet habt, musst Du diesen Grenzwert zunächst beweisen.

Zerlege dafür den Bruch wie folgt:
[mm] $$\bruch{n!}{n^n} [/mm] \ = \ [mm] \bruch{\overbrace{1*2*3*...*(n-1)*n}^{= \ n \ \text{Faktoren}}}{\underbrace{n*n*n*...*n*n}_{= \ n \ \text{Faktoren}}} [/mm] \ = \ [mm] \underbrace{\bruch{1}{n}*\bruch{2}{n}*\bruch{3}{n}*...*\bruch{n-1}{n}*\bruch{n}{n}}_{= \ n \ \text{Brüche}} [/mm] \ [mm] \stackrel{n\rightarrow\infty}{\longrightarrow} [/mm] \ ...$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]