funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:42 Do 22.07.2010 | Autor: | LadyA |
Aufgabe | Beispiel: Sei D [mm] \subset \IR [/mm] und V der [mm] \IR [/mm] - Vektorraum aller beschränkten Funktionen f: D [mm] \to \IR [/mm] . Dann wird durch (|f [mm] |):=\sup{(|f(x)| | x \in D \} [/mm] die Supremumsnorm auf V definiert, die V zum metrischen Raum macht. |
Kann mir bitte bitte jemand ausführlich erklären was die Supremumsnorm einer Funktion ist?
Ist damit einfach das Supremum der Funktion gemeint wie bei Folgen?
Z.B. ist das Supremum von der Folge sup(an)= (1- 1:n)= 1
Ist bei Funktionen mit dem Supremum die höchste Stelle im Wertebereich also im Bild gemeint? Aber wieso die Norm?
Bin durcheinander Hilfeeeeeee :-(
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:19 Do 22.07.2010 | Autor: | gfm |
> Beispiel: Sei D [mm]\subset \IR[/mm] und V der [mm]\IR[/mm] - Vektorraum
> aller beschränkten Funktionen f: D [mm]\to \IR[/mm] . Dann wird
> durch (|f [mm]|):=\sup{(|f(x)| | x \in D \}[/mm] die Supremumsnorm
> auf V definiert, die V zum metrischen Raum macht.
> Kann mir bitte bitte jemand ausführlich erklären was die
> Supremumsnorm einer Funktion ist?
> Ist damit einfach das Supremum der Funktion gemeint wie bei
> Folgen?
Ja, fast. Man bildet ja von den Werten |f(x)| das Supremum.
> Z.B. ist das Supremum von der Folge sup(an)= (1- 1:n)= 1
> Ist bei Funktionen mit dem Supremum die höchste Stelle im
> Wertebereich also im Bild gemeint?
Na ja fast, ist eben die kleinste obere Schranke. Das Supremum muss ja nicht immer angenommen werden. Und wie gesagt man bildet das Supremum vom Betrag der Funktion.
>Aber wieso die Norm?
Weil [mm] f\to ||f||:=\sup\{|f(x)|:x\in D\} [/mm] die Eigenschaften einer Norm hat.
LG
gfm
|
|
|
|