www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - freie Weglänge
freie Weglänge < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

freie Weglänge: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:18 So 27.09.2009
Autor: Unk

Aufgabe
Berechne die mittlere freie Weglänge von Silber bei 300K und bei 20K. Nimm an, dass jedes Ag-Atom ein Elektron ans Leitungsband abgibt.
Dicht [mm] \rho_{Ag}=10,5 [/mm] g/mol, molare Masse [mm] M_{Ag}=107,87 [/mm] g/mol, sp. elektr. Widerstände [mm] \varphi_{el 300K}=1,61\Omega [/mm] cm und [mm] \varphi_{el 20K}=0,0038\Omega [/mm] cm.

Hallo,

ich habe ein Ergebnis bereits vorliegen, das angeblich stimmen soll.
Sei [mm] \lambda [/mm] die gesuchte mitll. fr. Weglänge, dann soll rauskommen:
[mm] \lambda(300)=0,25 [/mm] nm
[mm] \lambda(20)=480 [/mm] nm.

Meine Rechnung:
Es gilt: [mm] \sigma=\frac{1}{\varphi}=\frac{ne^2\lambda}{mv} [/mm] mit n=Elektronenanzahl, m=Masse Elektron, v=mittl. Geschwindigkeit und umgeformt:
[mm] \lambda=\frac{mv}{ne^2\varphi} [/mm] und [mm] v=\sqrt{\frac{3k_BT}{m}} [/mm]
Also: [mm] \lambda=\frac{\sqrt{3k_BTm}}{ne^2\varphi}. [/mm]

Die Teilchenzahl berechne ich aus: [mm] n=\frac{N}{V}: [/mm]
[mm] M/\rho=\frac{V}{\frac{N}{N_A}} [/mm] folgt: [mm] n=5,9\cdot 10^{8}m^{-3}. [/mm]

Wenn ich all dies einsetze erhalte ich [mm] \lambda(20)=4,77\cdot 10^{-13}m [/mm] und [mm] \lambda(300)=433nm. [/mm]

Ist meine Rechnung fehlerhaft oder das vorgegebene Ergebnis?


        
Bezug
freie Weglänge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Mo 28.09.2009
Autor: rainerS

Hallo!

> Berechne die mittlere freie Weglänge von Silber bei 300K
> und bei 20K. Nimm an, dass jedes Ag-Atom ein Elektron ans
> Leitungsband abgibt.
>  Dicht [mm]\rho_{Ag}=10,5[/mm] g/mol, molare Masse [mm]M_{Ag}=107,87[/mm]
> g/mol, sp. elektr. Widerstände [mm]\varphi_{el 300K}=1,61\Omega[/mm]
> cm und [mm]\varphi_{el 20K}=0,0038\Omega[/mm] cm.

Erst einmal stimmen diese Werte nicht: [mm] $\varphi_{el 300K}=1,61*10^{-6}\Omega\mathrm{cm}$. [/mm] Den richtigen Wert bei 20K habe ich nicht gefunden.


> ich habe ein Ergebnis bereits vorliegen, das angeblich
> stimmen soll.
>  Sei [mm]\lambda[/mm] die gesuchte mitll. fr. Weglänge, dann soll
> rauskommen:
>  [mm]\lambda(300)=0,25[/mm] nm
>  [mm]\lambda(20)=480[/mm] nm.
>  
> Meine Rechnung:
>  Es gilt: [mm]\sigma=\frac{1}{\varphi}=\frac{ne^2\lambda}{mv}[/mm]
> mit n=Elektronenanzahl, m=Masse Elektron, v=mittl.
> Geschwindigkeit und umgeformt:
>  [mm]\lambda=\frac{mv}{ne^2\varphi}[/mm] und
> [mm]v=\sqrt{\frac{3k_BT}{m}}[/mm]
>  Also: [mm]\lambda=\frac{\sqrt{3k_BTm}}{ne^2\varphi}.[/mm]
>  
> Die Teilchenzahl berechne ich aus: [mm]n=\frac{N}{V}:[/mm]
>  [mm]M/\rho=\frac{V}{\frac{N}{N_A}}[/mm] folgt: [mm]n=5,9\cdot 10^{8}m^{-3}.[/mm]

[mm] n=5,0*10^{28}\mathrm{m}^{-3} [/mm].

>  
> Wenn ich all dies einsetze erhalte ich
> [mm]\lambda(20)=4,77\cdot 10^{-13}m[/mm] und [mm]\lambda(300)=433nm.[/mm]
>  
> Ist meine Rechnung fehlerhaft oder das vorgegebene
> Ergebnis?

Du hast die Boltzmannverteilung für die Elektronen angenommen, um die mittlere Geschwindigkeit der Elektronen zu bestimmen. Das ist falsch. Elektronen sind Fermionen, daher musst du die Fermiverteilung verwenden. Berechne die Fermienergie von Silber und daraus die mittlere Geschwindigkeit.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]