f(x)=2x-tanx < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:00 Do 04.01.2007 | Autor: | Miala |
Aufgabe | Gegeben sei die Funtkion f mit f(x)=2x-tanx
a)Ermitteln sie die Nullstellen des Graphen der Funktion f im Intervall [mm] ]-\bruch{\pi}{2}; \bruch{\pi}{2}[ [/mm] mit einem Näherungsverfahren auf zwei Nachkommastellen genau.
b) Untersuchen Sie den Graphen von f auf Symmetrie sowie asymptotisches Verhalten.
c) Ermitteln Sie die Extrem- und Wendepunkte des Graphen von f im Intervall [mm] ]-\bruch{\pi}{2}; \bruch{\pi}{2}[.
[/mm]
d) Stellen Sie den Graphen von f im Intervall von -1,5 < x < 1,5 dar.
e) Geben Sie den Flächeninhalt der zwischen dem Graphen von f und der x-Achse im 1.Quadranten eingelschlossenen Fläche an. |
Hallo an alle, die mir gern helfen wollen!
Ich komme mit der Aufgabe eigentlich gut zurecht ich habe nur eine Frage zur Teilaufgabe b).
Als Symmtrieverhalten habe ich Punktsymmetrie zum Ursprung herausbekommen, doch ich weiss leider nicht genau, wie ich die Tangensfunktion auf Asymptoten untersuchen soll. Definitionslücken habe ich ja eigentlich nicht finden müssen und wie lasse ich also den tanx gegen unendlich gehen? Umformen in sinx/cosx?
Ich hoffe, einer oder eine von Euch kann mir einen Tipp geben und viel weiterhelfen!
Viele Grüße,
Mia
|
|
|
|
Hallo Miala,
> Gegeben sei die Funtkion f mit f(x)=2x-tanx
>
> a)Ermitteln sie die Nullstellen des Graphen der Funktion f
> im Intervall [mm]]-\bruch{\pi}{2}; \bruch{\pi}{2}[[/mm] mit einem
> Näherungsverfahren auf zwei Nachkommastellen genau.
>
> b) Untersuchen Sie den Graphen von f auf Symmetrie sowie
> asymptotisches Verhalten.
>
> c) Ermitteln Sie die Extrem- und Wendepunkte des Graphen
> von f im Intervall [mm]]-\bruch{\pi}{2}; \bruch{\pi}{2}[.[/mm]
>
> d) Stellen Sie den Graphen von f im Intervall von -1,5 < x
> < 1,5 dar.
>
> e) Geben Sie den Flächeninhalt der zwischen dem Graphen von
> f und der x-Achse im 1.Quadranten eingelschlossenen Fläche
> an.
> Hallo an alle, die mir gern helfen wollen!
>
> Ich komme mit der Aufgabe eigentlich gut zurecht ich habe
> nur eine Frage zur Teilaufgabe b).
> Als Symmtrieverhalten habe ich Punktsymmetrie zum Ursprung
> herausbekommen, doch ich weiss leider nicht genau, wie ich
> die Tangensfunktion auf Asymptoten untersuchen soll.
> Definitionslücken habe ich ja eigentlich nicht finden
> müssen und wie lasse ich also den tanx gegen unendlich
> gehen? Umformen in sinx/cosx?
Asymptotisches Verhalten bedeutet ja: [mm] x\rightarrow\infty [/mm] untersuchen, aber du sollst ja nur das Intervall [mm]]-\bruch{\pi}{2}; \bruch{\pi}{2}[ [/mm] betrachten.
Aber vielleicht ist die Einschränkung auch nur für die Bestimmung der Nullstellen gemeint?
Dann gibt es viele Unstetigkeitsstellen, weil tan x nicht stetig ist.
Zur weiteren Untersuchung hilft dir dann tatsächlich die "Übersetzung" [mm] \tan(x)=\frac{\sin x}{\cos x}
[/mm]
Zeichne mal die Funktion z.B. mit FunkyPlot.
Dann erkennst du, dass die einzelnen Zweige zwischen den Unstetigkeitsstellen längs der Geraden 2x verschoben werden...
Ich weiß nicht, ob ich diese Gerade als Asymptote bezeichnen wollte...
Reicht dir dies als Hilfestellungen?
Gruß informix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:34 Do 04.01.2007 | Autor: | Miala |
Hallo informix!
Also ich bin mir ziemlich sicher, dass das Intervall in b) nicht gilt, weil es ja nicht übergeordnet als Definitionsbereich angegeben wurde und in c) sogar erneut erwähnt wird.
Da ich ja praktisch eine Kurvendiskussion durchführen soll, hilft mir der Funktionsplotter nicht viel. Wie finde ich also selbständig einen Grenzwert für x->unendlich? vielleicht kannst du mir ja oder jemand anders einen Hinweis geben, wie ich am besten vorgehe.
Vielen Dank nochmal,
Mia
|
|
|
|
|
Hallo Miala,
> Hallo informix!
>
> Also ich bin mir ziemlich sicher, dass das Intervall in b)
> nicht gilt, weil es ja nicht übergeordnet als
> Definitionsbereich angegeben wurde und in c) sogar erneut
> erwähnt wird.
Das sehe ich genau so - ich habe nur "laut" nachgedacht...
> Da ich ja praktisch eine Kurvendiskussion durchführen soll,
> hilft mir der Funktionsplotter nicht viel.
naja, er zeigt dir zumindest, dass es keine wirkliche Asymptote gibt, an die sich der Graph anschmiegt, sondern dass die Funktion periodisch längs der angegebenen Geraden ist.
> Wie finde ich also selbständig einen Grenzwert für x->unendlich?
Meine Antwort:
Der Graph der Tangensfunktion [mm] $\tan [/mm] x$ wird längs der Geraden 2x verschoben. Es gibt keine "Schmiegekurve", an die sich der Graph anlegt, weil immer wieder Unstetigkeitsstellen mit Polstellen mit Vorzeichenwechsel dazwischen liegen.
> vielleicht kannst du mir ja oder jemand anders einen
> Hinweis geben, wie ich am besten vorgehe.
>
> Vielen Dank nochmal,
> Mia
Gruß informix
|
|
|
|