f-invarianter Unterraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem weiteren Forum gestellt.
Moin,
könntet ihr mir vielleicht mal nen kleenen Tipp bei der folgenden Aufgabe geben???
Sei f [mm] \in [/mm] End[mm]_\IR [/mm]([mm]\IR^2[/mm]), sodass [mm] A_f_,_X_,_X=[/mm] [mm]\begin{pmatrix}2 & 1 \\0 & 2 \end{pmatrix}[/mm] und X=[mm]\left\{ e_1,e_2 \right\} [/mm]. Sei [mm] W_1 [/mm] ein Unterraum von [mm]\IR^2[/mm] wobei [mm] W_1=[/mm] [mm]\left\langle (1,0) \right\rangle[/mm]. Nun soll ich zeigen, dass [mm] W_2 [/mm] kein f-invarianter Unterraum ist.
Einmal soll ich jetzt zeigen, dass [mm] W_1 [/mm] f-invariant ist.
Und zum anderen ist noch gegeben, dass [mm] W_2 [/mm] Unterraum von [mm]\IR^2[/mm] ist, sodass [mm]\IR^2[/mm][mm] =W_1[/mm] [mm]\oplus[/mm][mm] W_2. [/mm] Nun soll ich zeigen, dass [mm] W_2 [/mm] kein f-invarianter Unterraum ist.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 04:41 Di 29.06.2004 | Autor: | Marc |
Hallo sandramaus,
> Sei f [mm]\in[/mm] End[mm]_\IR [/mm]([mm]\IR^2[/mm]), sodass [mm]A_f_,_X_,_X=[/mm]
> [mm]\begin{pmatrix}2 & 1 \\0 & 2 \end{pmatrix}[/mm] und X=[mm]\left\{ e_1,e_2 \right\} [/mm].
> Sei [mm]W_1[/mm] ein Unterraum von [mm]\IR^2[/mm] wobei [mm]W_1=[/mm] [mm]\left\langle (1,0) \right\rangle[/mm].
> Nun soll ich zeigen, dass [mm]W_2[/mm] kein f-invarianter Unterraum
> ist.
Mir ist nicht ganz klar, wie [mm] W_2 [/mm] definiert ist, das fand ja bis hierher noch keine Erwähnung. Kann es sein, dass die Definition von [mm] W_2 [/mm] unten kommt, und du die Reihenfolge verändert hast? Ansonsten hätte ich die Aufgabe nicht verstanden. Schau doch bitte noch mal in der Aufgabenstellung nach und gebe sie exakt wieder.
> Einmal soll ich jetzt zeigen, dass [mm]W_1[/mm] f-invariant ist.
>
> Und zum anderen ist noch gegeben, dass [mm]W_2[/mm] Unterraum von
> [mm]\IR^2[/mm] ist, sodass [mm]\IR^2[/mm][mm] =W_1[/mm] [mm]\oplus[/mm][mm] W_2.[/mm] Nun soll ich
> zeigen, dass [mm]W_2[/mm] kein f-invarianter Unterraum ist.
Bis du meine Verwirrung um [mm] W_2 [/mm] auflöst, beschäftige ich mich mal mit [mm] W_1.
[/mm]
In deiner anderen Frage hat du ja bereits die Definition von f-invariant zitiert.
Du mußt also zeigen, dass [mm] $f(W_1)\subset W_1$.
[/mm]
Das ist aber doch ganz einfach.
Sei [mm] $w_1\in W_1$
[/mm]
[mm] $\Rightarrow w_1=\lambda*\vektor{1\\0}$
[/mm]
[mm] $\Rightarrow f(w_1)=Aw_1=A\lambda*\vektor{1\\0}=\lambda*A\vektor{1\\0}=\lambda\vektor{2\\0}=2\lambda*\vektor{1\\0}\in W_1$
[/mm]
ad [mm] $W_2$)
[/mm]
Hier vermute ich einfach mal, dass [mm] W_2 [/mm] gerade so definiert ist, dass [mm] $\IR^2=W_1\oplus W_2$
[/mm]
Nun sollst du zeigen, dass [mm] W_2 [/mm] nicht f-invariant ist.
Dazu wählst du zunächst eine Basis für [mm] $W_1$, [/mm] ich nehme als Basisvektor [mm] $w_1=e_1$, [/mm] bzgl. der Basis X also [mm] $w_1=\vektor{1\\0}$.
[/mm]
Jeder Vektor [mm] $w_2$, [/mm] der nicht linear abhängig ist zu [mm] $w_1$ [/mm] würde [mm] W_2 [/mm] mit der gewünschten Eigenschaft [mm] $\IR^2=W_1\oplus W_2$ [/mm] aufspannen, also: [mm] $W_2=\langle w_2\rangle$.
[/mm]
Bzgl. der Basis X hat [mm] $w_2$ [/mm] eine Darstellung [mm] $w_2=\lambda_1*e_1+\lambda_2*e_2$
[/mm]
Wegen [mm] $W_1\cap W_2=\{0\}$ [/mm] (das steckt implizit in [mm] "$W_1\oplus W_2$") [/mm] muß [mm] $\lambda_2\not=0$ [/mm] sein.
Ich ab: [mm] $f(w_2)=Aw_2=A(\lambda_1*e_1+\lambda_2*e_2)=\vektor{2*\lambda_1+\lambda_2\\2\lambda_2}$
[/mm]
Jetzt kannst du ja mal überprüfen, ob [mm] $\vektor{2*\lambda_1+\lambda_2\\2\lambda_2}=(2*\lambda_1+\lambda_2)*e_1+2\lambda_2*e_2\in W_2$ [/mm] gilt.
Dazu müßtest es ja ein [mm] $\mu$ [/mm] geben, so dass
[mm] $(2*\lambda_1+\lambda_2)*e_1+2\lambda_2*e_2=\mu*w_2$
[/mm]
[mm] $\gdw\ (2*\lambda_1+\lambda_2)*e_1+2\lambda_2*e_2=\mu*(\lambda_1*e_1+\lambda_2*e_2)$
[/mm]
[mm] $\gdw\ (2*\lambda_1+\lambda_2)*e_1+2\lambda_2*e_2=\mu*\lambda_1*e_1+\mu\lambda_2*e_2)$
[/mm]
[mm] $\gdw\ 2*\lambda_1+\lambda_2=\mu*\lambda_1\ \wedge\ 2\lambda_2=\mu\lambda_2*$
[/mm]
Da [mm] $\lambda_2\not=0$ [/mm] folgt aus der zweiten Gleichung sofort [mm] $\mu=2$ [/mm] und die erste lautet dann:
[mm] $2*\lambda_1+\lambda_2=\mu*\lambda_1$
[/mm]
[mm] $\gdw\ 2*\lambda_1+\lambda_2=2*\lambda_1$
[/mm]
[mm] $\gdw\ \lambda_2=0$
[/mm]
Mmh, das nenne ich einen Widerspruch. Also ist [mm] W_2 [/mm] nicht f-invariant.
Ich würde mir wünschen, dass man das noch irgendwie schneller zeigen kann, aber nicht mehr um diese Zeit
Viele Grüße,
Marc
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:03 Di 29.06.2004 | Autor: | sandramaus |
Hallöchen Marc,
danke für deine super schnelle Antwort!
Zum Unterraum [mm] W_2 [/mm] wurde weiter keine Aussage gemacht, aber stimmt ja - wenn [mm]\IR^2[/mm] = [mm] W_1[/mm] [mm]\oplus[/mm][mm] W_2 [/mm] folgt ja daraus, dass [mm] W_1 [/mm] und [mm] W_2 [/mm] nichts gemeinsam haben und [mm] W_1 [/mm] und [mm] W_2 [/mm] sollen ja den [mm]\IR^2[/mm] aufspannen und daraus folgt ja dann, dass [mm] W_2 [/mm] = [mm]\left\langle (0,1) \right\rangle [/mm]
Manchmal sieht man den Wald vor lauter Bäumen nicht, trotzdem herzlichen Dank!
Ganz liebe Grüße - sandramaus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:26 Do 01.07.2004 | Autor: | Marc |
Hallo sandramaus,
> Zum Unterraum [mm]W_2[/mm] wurde weiter keine Aussage gemacht, aber
> stimmt ja - wenn [mm]\IR^2[/mm] = [mm]W_1[/mm] [mm]\oplus[/mm][mm] W_2[/mm] folgt ja daraus,
> dass [mm]W_1[/mm] und [mm]W_2[/mm] nichts gemeinsam haben und [mm]W_1[/mm] und [mm]W_2[/mm]
> sollen ja den [mm]\IR^2[/mm] aufspannen und daraus folgt ja dann,
> dass [mm]W_2[/mm] = [mm]\left\langle (0,1) \right\rangle[/mm]
Das letzte sehe ich nicht so, [mm] $W_2$ [/mm] muss nicht notwendigerweise von $(0,1)$ aufgespannt werden, dies ist nur eine Möglichkeit von vielen.
Stattdessen ist [mm] $W_2$ [/mm] ein Unterraum, der von einem zu $(1,0)$ linear unabhängigen Vektor aufgespannt wird.
Viele Grüße,
Marc
|
|
|
|