www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - euklidischer VR
euklidischer VR < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

euklidischer VR: Bitte um Korrektur
Status: (Frage) überfällig Status 
Datum: 18:44 Mi 11.07.2007
Autor: Zerwas

Aufgabe
Sei [mm] V=\IR^4, W=<\pmat{1\\0\\1\\0},\pmat{-1\\2\\0\\0}> [/mm] und für [mm] x,y\in\IR^4 [/mm] <x,y>=x^TAy mit
[mm] A=\pmat{2&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1} [/mm]

(a) Überlegen Sie ob V oder W mit der oben definierten Bilinearform < , > euklidische Räume sind.
(b) Geben Sie eine Orthonormalbasis von W bezüglich < , > an.

(a) V und W sind trivialerweise VR. Jezt bleibt noch zu zeigen, dass < , > symmetrisch und positiv definit ist.
Symmetrie: lässt sich aus der symmetrie von A herleiten
positive Definitheit: für V sind nicht alle EW von A positiv und damit ist < , > über V kein Skalarprodut. Über W jedoch ist der Eintrag [mm] a_{44} [/mm] irrelevant, da man W auch als Teilraum von [mm] \IR^3 [/mm] auffassen könnte und damit die 4. Zeile und Spalte der Matrix wegfallen würden. [mm] \Rightarrow [/mm] < , > ist über W ein Salarprodukt und damit W bzgl. < , > ein euklidischer Raum.

(b) Orthogonalisieren:
[mm] u_1=\pmat{1\\0\\1\\0} [/mm]
[mm] u_2=\pmat{-1\\2\\0\\0}-\bruch{<\pmat{-1\\2\\0\\0},\pmat{1\\0\\1\\0}>}{<\pmat{1\\0\\1\\0},\pmat{1\\0\\1\\0}>}*\pmat{1\\0\\1\\0} [/mm]
[mm] <\pmat{-1\\2\\0\\0},\pmat{1\\0\\1\\0}>=\pmat{-1&2&0&0}*\pmat{2&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1}*\pmat{1\\0\\1\\0}=-2 [/mm]
[mm] <\pmat{1\\0\\1\\0},\pmat{1\\0\\1\\0}>=\pmat{1\\0\\1\\0}*\pmat{2&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1}*\pmat{1\\0\\1\\0}=3 [/mm]
[mm] \Rightarrow u_2=\pmat{-1\\2\\0\\0}+\bruch{2}{3}*\pmat{1\\0\\1\\0}=\pmat{-\bruch{1}{3}\\2\\\bruch{2}{3}\\0} [/mm]

Orthogonalisieren:
[mm] =3 \Rightarrow ||u_1||=\Wurzel{3} [/mm]
[mm] \Rightarrow e_1=\pmat{\bruch{1}{\wurzel{3}}\\0\\\bruch{1}{\wurzel{3}}\\0} [/mm]

[mm] =\bruch{14}{3} \Rightarrow ||u_2||=\bruch{\wurzel{14}}{\wurzel{3}} [/mm]
[mm] \Rightarrow e_2=\pmat{-\bruch{\wurzel{3}}{3*\wurzel{14}}\\\bruch{2*\wurzel{3}}{\wurzel{14}}\\\bruch{2*\wurzel{3}}{3*\wurzel{14}}\\0} [/mm]


Stimmt das so?

Gruß Zerwas

        
Bezug
euklidischer VR: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 13.07.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]