www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - erweiterte Zahlengerade
erweiterte Zahlengerade < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

erweiterte Zahlengerade: (einfache?) Frage
Status: (Frage) beantwortet Status 
Datum: 20:05 Fr 05.11.2004
Autor: Bastiane

Hallo!

Würde nur gerne mal kurz wissen, was unser Prof mit folgender "Definition" gemeint hat:
[mm] \IR':=[-\infty,\infty] [/mm] (erweiterte Zahlengerade)
(Eigentlich hat er es [mm] \IR [/mm] mit nem Querstrich oben drauf genannt, aber das ist ja wohl egal.)
Jedenfalls ist das Einzige, was mir dazu einfällt, dass man normalerweise [mm] \infty [/mm] nicht in einem Intervall einschließt, hier ist es aber schon mit drin. Aber was soll das bedeuten?
[haee]

Viele Grüße
Bastiane
[cap] [banane]

        
Bezug
erweiterte Zahlengerade: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Fr 05.11.2004
Autor: Marcel

Liebe Bastiane,

> Hallo!
>  
> Würde nur gerne mal kurz wissen, was unser Prof mit
> folgender "Definition" gemeint hat:
>  [mm]\IR':=[-\infty,\infty][/mm] (erweiterte Zahlengerade)

Naja, es ist ja [mm] $\IR=(-\infty,\infty)$, [/mm] und dein Prof meint so etwas wie:
[mm] $\IR'=\IR\cup\{-\infty,\infty\}=[-\infty,\infty]$. [/mm]

Wenn ich mich recht erinnere, nennt man das die Zwei-Punkt-Kompaktifizierung von [mm] $\IR$, [/mm] denn in [mm] $\IR'$ [/mm] gilt, dass jede Folge eine konvergente Teilfolge hat, was ja in [mm] $\IR$ [/mm] nicht der Fall ist, da z.B. die Folge [mm] $(a_n)_{n \in \IN}$ [/mm] definiert durch [mm] $a_n:=n$ [/mm] gegen [mm] $\infty$ [/mm] geht (bei $n [mm] \to \infty$) [/mm] und auch jede Teilfolge [mm] $(a_{n_k})_{k \in \IN}$ [/mm] von [mm] $(a_n)_{n \in \IN}$ [/mm] geht gegen [mm] $\infty$ [/mm] bei $k [mm] \to \infty$. [/mm] Es ist aber [mm] $\infty \notin \IR$. [/mm]
Er hat bestimmt auch vorher Rechenregeln für [mm] $\infty$ [/mm] festgelegt, etwa:
[mm] $a+\infty=\infty$ $\forall [/mm] a [mm] \in \IR$, [/mm] nicht wahr?

>  (Eigentlich hat er es [mm]\IR[/mm] mit nem Querstrich oben drauf

Also so: [mm] $\overline{\IR}$ [/mm]

> genannt, aber das ist ja wohl egal.)

Es soll vielleicht auch etwas andeuten:
Stelle dir [mm] $\IR$ [/mm] mal als offenes Intervall vor (so, wie du dir normalerweise ein offenes Intervall $(a,b)$ aus [mm] $\IR$ [/mm] auf dem Zahlenstrahl vorstellst). Wenn du das Intervall abschließt, so nimmst du ja den linken und den rechten Endpunkt hinzu. Bei [mm] $\IR$ [/mm] wären das [mm] $-\infty$ [/mm] und [mm] $+\infty$, [/mm] und wenn man diese bei [mm] $\IR$ [/mm] aufnimmt, dann erhält man [mm] $\IR'$. [/mm] Das ist, denke ich, die grobe Vorstellung (das ist nichts wirklich mathematisches, was ich da geschrieben habe). Und den Abschluß einer Menge bezeichnet man halt meist mit einem Querstrich drüber.

>  Jedenfalls ist das Einzige, was mir dazu einfällt, dass
> man normalerweise [mm]\infty[/mm] nicht in einem Intervall
> einschließt, hier ist es aber schon mit drin. Aber was soll
> das bedeuten?
>  [haee]

Ich hoffe, es ist jetzt klarer geworden. Leider muss ich gleich weg. [mussweg]

> Viele Grüße
>  Bastiane
>  [cap] [banane]

Liebe Grüße,
Marcel
[winken]  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]