www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - endliche Isometriegruppen
endliche Isometriegruppen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endliche Isometriegruppen: Klassifikation im Raum
Status: (Frage) überfällig Status 
Datum: 15:54 Sa 22.11.2008
Autor: Tinuviel-Aelin

Hallo,
ich habe ein Problem mit der Klassifizierung der endlichen Untergruppen des [mm] \IR^{3}. [/mm]
Ein Satz besagt, dass alle enlichen Untergruppen isomorph sind zu einer der folgenden Gruppen: [mm] C_{n} [/mm] zyklischen Gruppe , [mm] D_{n} [/mm] Diedergruppe, T Tetraeder-, O Oktaeder-, I Ikosaedergruppe.
Ein anderer Satz (Hessels Theorem) zählt explizit alle endlichen Untergruppen auf, wozu u.A. T (hier nur die Drehungen, 24 Elemente), T* (Spiegelungen, 24 Elemente), usw. zählen.
Sind dann beim ersten Satz mit T auch nur die Drehungen gemeint? Denn wenn etwas isomorph ist, müssen die beiden Gruppen ja auch gleichmächtig sein, oder? Und wenn hier die vollständige Tetraedergruppe gemeint wäre, könnte doch die Drehgruppe T* nicht isomorph dazu sein, oder?

Das zweite ist, dass als explizite Gruppen auch [mm] C_{2n}, C_{n}D_{n}, [/mm] OT und andere genannt werden. Sind diese dann wirklich isomorph zu einer der im ersten Satz genannten Gruppen?

Vielen Dank!

        
Bezug
endliche Isometriegruppen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 So 30.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]