www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - endl.-erz. Modul/Lin()
endl.-erz. Modul/Lin() < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

endl.-erz. Modul/Lin(): Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:59 Sa 16.06.2012
Autor: triad

Aufgabe
Es seien R ein euklidscher Ring, M ein endlich erzeugter R-Modul und N [mm] \subseteq [/mm] M ein R-Untermodul.

a) Zeigen Sie, dass $M/N$ ein endlich erzeugter R-Modul ist.

b) Es seien [mm] x_1, \ldots ,x_s \in [/mm] M, so dass [mm] \bar{x_1}, \ldots ,\bar{x_s} \in$M/N$ [/mm] linear unabhängig sind. Zeigen Sie, dass [mm] Lin(x_1, \ldots ,x_n) \subseteq [/mm] M ein freier Untermodul ist und dass [mm] $Lin(x_1, \ldots ,x_s) \cap [/mm] N = [mm] \{0\}$ [/mm] gilt.

c) Zeigen Sie, dass für $M/N$ = [mm] Lin(\bar{x_1}, \ldots ,\bar{x_t}) [/mm] gilt: M = N + [mm] Lin(x_1, \ldots ,x_t). [/mm]

Hallo,

Bei der a) könnte man das doch ganz einfach lösen, indem man, einen Beweisschritt eines Korollars benutzend, schreibt: Da M endl.-erz. ist, gibt es ein [mm] Lin(m_1,\ldots,m_n)=M, [/mm] dann ist [mm] M/M_t=Lin(\bar{m_1},\ldots,\bar{m_n}). $M_t$ [/mm] ist der Torsionsuntermodul von M, also ist M modulo einem Untermodul endl.-erz., also auch $M/N$.

Mit dem anderen [mm] $Lin()_{}$ [/mm] Zeug komme ich noch nicht zurecht. Woher kommt bei b) z.B. das n, gilt $n [mm] \le [/mm] s$ ?

        
Bezug
endl.-erz. Modul/Lin(): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 So 17.06.2012
Autor: triad

kann ich das bei der a) so machen oder gilt das nur für [mm] M_t [/mm] ?

Bezug
        
Bezug
endl.-erz. Modul/Lin(): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mo 18.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]