www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - "einfache" GDgl
"einfache" GDgl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"einfache" GDgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 So 21.10.2007
Autor: schachuzipus

Aufgabe
Zu lösen ist die GDgl

[mm] $y'=1+y^2$ [/mm]

Hallo zusammen,

wir haben gerade mit GDgl angefangen und ich werde noch verrückt, weil ich diese einfach aussehende DGl nicht verarztet bekomme.

Es soll wohl rauskommen: [mm] $y(x)=\tan(x+c)$ [/mm]

Das stimmt auch, wenn ma's ableitet, passt es

Ich habe zuerst versucht, das homogene Problem [mm] $y'=y^2$ [/mm] zu lösen.

Das ergab [mm] $\frac{dy}{dx}\frac{1}{y^2}=1\Rightarrow \frac{1}{y^2}dy=1dx$ [/mm]

Integrieren und umformen ergab [mm] $y=-\frac{1}{x+c}$ [/mm]

Nun Variation der Konstanten: [mm] $y(x)=-\frac{1}{x+c(x)}$ [/mm]

[mm] $\Rightarrow y'(x)=\frac{1+c'(x)}{(x+c(x))^2}=\frac{1}{(x+c(x))^2}+\frac{c'(x)}{(x+c(x))^2}$ [/mm]

Also Vergleich mit der Ursprungsgl. [mm] $\Rightarrow \frac{c'(x)}{(x+c(x))^2}=1$ [/mm]

Also [mm] $c'(x)=(x+c(x))^2$ [/mm]

Und nu ist Ende :(

Hoffe, jemand kann mir Erleuchtung bringen

LG

schachuzipus

        
Bezug
"einfache" GDgl: Trennung der Variablen
Status: (Antwort) fertig Status 
Datum: 00:35 Mo 22.10.2007
Autor: Loddar

Hallo schachuzipus!


Es geht viel leichter: mit Trennung der Variablen!

$$y' \ = \ [mm] 1+y^2$$ [/mm]
[mm] $$\bruch{dy}{dx} [/mm] \ = \ [mm] 1+y^2$$ [/mm]
[mm] $$\bruch{dy}{1+y^2} [/mm] \ = \ dx$$
[mm] $$\blue{\integral}\bruch{dy}{1+y^2} [/mm] \ = \ [mm] \blue{\integral}dx$$ [/mm]
[mm] $$\arctan(y) [/mm] \ = \ x+c$$

Gruß
Loddar


Bezug
                
Bezug
"einfache" GDgl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:45 Mo 22.10.2007
Autor: schachuzipus

Hallo Loddar,

[bonk]

Brett vor'm Kopf. Ich hatte mich so auf die andere Rechnung versteift...


Danke sehr.

Warum klappt das denn mit meiner umständlichen Rechnung nicht?

Ich finde keinen Fehler... [kopfkratz3]

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]