www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - eigenwerte vektoren
eigenwerte vektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

eigenwerte vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Fr 27.12.2013
Autor: arbeitsamt

edit
        
Bezug
eigenwerte vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Fr 27.12.2013
Autor: fred97


> Ein zylindrischer Stab (mit Radius r = 1 cm bzgl. (x;
> y)-Koordinaten und Länge l = 1m in z-Richtung) wird um
> 10grad verdrillt. Das Hooke’sche Gesetz liefert den
> (ortsabhängigen) Spannungstensor
>  
> [mm]S=k\pmat{ 0 & 0 & -y \\ 0 & 0 & x \\ -y & x & 0}[/mm]
>  
> mit der Materialkonstanten k = 13,6 [mm]N/mm^2.[/mm]
>  
> Mit [mm]\delta(n):=[/mm] n^TSn für n [mm]\in R^3[/mm] mit |n|=1
>  wird die Normalspannung bezeichnet.
>  
> a) Man berechne die Hauptspannungen (eigenwerte) und
> Hauptspannungsrichtungen (eigenvektoren) von S für jeden
> Punkt (x,y,z) des Stabes.
>  muss ich für aufg a) nur die eigenwerte und - vektoren
> der matrix
>  
> [mm]S=\pmat{ 0 & 0 & -13,6y \\ 0 & 0 & 13,6x \\ -13,6y & 13,6x & 0}[/mm]
>  
> bestimmen?
>  
> x und y sind in der matrix nur reelle zahlen oder?  

2 mal ja !

FRED


Bezug
                
Bezug
eigenwerte vektoren: Korrektur und Tipp
Status: (Frage) beantwortet Status 
Datum: 19:07 Fr 27.12.2013
Autor: arbeitsamt

edit
Bezug
                        
Bezug
eigenwerte vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Fr 27.12.2013
Autor: ullim

Hi,

> ok ich habe dann folgendes raus
>  
>
> det(S [mm]-\lambda*E)=0= det(\pmat{ -\lambda & 0 & -13,6y \\ 0 & -\lambda & 13,6x \\ -13,6y & 13,6x & -\lambda}[/mm]
>  
> = [mm]-\lambda^3+\lambda184,96y^2+\lambda184,96x^2[/mm]
>  
> ich weiß jetzt nicht wie ich hier [mm]\lambda[/mm] bestimmen soll,
> da x und y nicht gegeben sind

Klammere [mm] \lambda [/mm] aus, damit ist [mm] \lambda=0 [/mm] eine lösung. Dann kannst Du noch die quadratische Gleichung in Abhängigkeit von x und y lösen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]