www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - e-Entwicklung (Ansatz richtig?
e-Entwicklung (Ansatz richtig? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e-Entwicklung (Ansatz richtig?: Frage
Status: (Frage) beantwortet Status 
Datum: 13:53 Mi 05.01.2005
Autor: VHN

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, alle zusammen!

Ich hab hier eine Aufgabe gelöst, aber ich weiß nicht, ob sie stimmt. Vielleicht könnt ihr mir ja helfen!

Das ist die Aufgabe:
[mm] \bruch{1}{2} (e^{ix} [/mm] + [mm] e^{-ix}) [/mm] = 1 - [mm] \bruch{1}{2} x^{2} [/mm] + [mm] \bruch{1}{24} x^{4} [/mm] + [mm] o(x^{4}) [/mm] für x [mm] \to [/mm] 0.

Und das ist meine Lösung:
[mm] e^{ix} [/mm] =  [mm] \summe_{k=0}^{\infty} \bruch{(ix)^{k}}{k!} [/mm]
= 1 + ix - [mm] \bruch{x^{2}}{2} [/mm] - [mm] \bruch{ix^{3}}{6} [/mm] + [mm] \bruch{x^{4}}{24} [/mm] + [mm] o(x^{4}) [/mm]

[mm] e^{-ix} [/mm] =  [mm] \summe_{k=0}^{\infty} \bruch{(-ix)^{k}}{k!} [/mm]
= 1 - ix - [mm] \bruch{x^{2}}{2} [/mm] + [mm] \bruch{ix^{3}}{6} [/mm] + [mm] \bruch{x^{4}}{24} [/mm] + [mm] o(x^{4}) [/mm]

[mm] e^{ix} [/mm] + [mm] e^{-ix}= [/mm] 2 - [mm] x^{2} [/mm] + [mm] \bruch{x^{4}}{12} [/mm] + [mm] o(x^{4}) [/mm] + [mm] o(x^{4}) [/mm]

[mm] \bruch{1}{2} (e^{ix} [/mm] + [mm] e^{-ix}) [/mm] = 1 - [mm] \bruch{x^{2}}{2} [/mm] + [mm] \bruch{x^{4}}{24} [/mm] + [mm] o(x^{4}) [/mm]

wobei gilt: [mm] o(x^{4}) [/mm] + [mm] o(x^{4}) [/mm] = [mm] o(x^{4}) [/mm]

Ist mein Ansatz richtig?
Ich hätte aber noch ein paar zusätzliche Fragen.
Wenn [mm] o(x^{4}) [/mm] dasteht, kann ich dann immer die Potenzreihenentwicklung von e nach dem [mm] x^{4}-Glied [/mm] abschneiden? Gilt das aber nur für x [mm] \to [/mm] 0, oder auch für Fälle, wo x gegen etwas anderes konvergiert?

Danke für eure Hilfe!
Ciao










        
Bezug
e-Entwicklung (Ansatz richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mi 05.01.2005
Autor: Peter_Pein

Hallo,

sieht gut aus, was Du da geschrieben hast - ich habe keinen Fehler gesehen.

Wenn Du [mm] $o(x^{4}$ [/mm] hast, wird das zusammen mit [mm] $x^4$ [/mm] gegen 0 gehen.
Falls Du den Cosinus jedoch um z.B. [mm] $\bruch{\pi}{2}$ [/mm] entwickels und nicht um 0, wie Du es getan hast, erhältst Du [mm]cos(x)=-(x-\bruch{\pi}{2})+\bruch{(x-\bruch{\pi}{2})^{3}}{3!}+o((x-\bruch{\pi}{2})^{5})[/mm].
Das geht dann eben mindestens so schnell gegen 0 wie [mm] $(x-\bruch{\pi}{2})^{5}$. [/mm]

Gruß,
Peter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]