www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - das galton-modell
das galton-modell < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

das galton-modell: erklärung
Status: (Frage) beantwortet Status 
Datum: 15:17 Mo 25.08.2008
Autor: mef

hallo zusammen,
wir haben heute das galton-modell durchgenommen .
haben dazu was aufbekommen.
undzwar geht es ja hierbei darum, dass die kügelchen in unserem beispiel für den ersten schacht 8 mal nach rechts und 0 mal nach links müssen damit sie in den 1. b.z.w.0.
schacht fallen.( 8 schächte sind es plus die aüßersten,sind durchnummeriert von 0-9)

wir sollen nun die wahrscheinlichkeiten für die einzelnen schachte berechnen.

dafür muss man die formel [mm] \vektor{n \\ k} [/mm] verwenden.
aber muss ich dann zum beispiel für den 3 schacht nicht noch die anzahl um wieviel die kugel nach rechts und nach links gefallen ist angeben sowie bei den lottospielen?



für eine erklärung  wäre ich echt dankbar
und auch wenn ihr mir schon  das ziel oder die formel die dahinter steckt, verratet:)

gruß mef

        
Bezug
das galton-modell: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Mo 25.08.2008
Autor: M.Rex

Hallo

Bezeichne mal mit n die Anzahl der Schächte (Hier also 10 - von 0-9 nummeriert) in die die Kugeln fallen können und mit k die Anzahl er Verzweigungen, an denen die  Kugel nach rechts fällt.

Für den ersten Fall (Fach 0) muss die dann 0-mal nach rechts fallen.
Um in zweiten Fach (1) zu landen muss die Kugel einmal nach rechts fallen. Ob das nun an Anfang der 10 Stufen passiert, oder am Ende ist egal, wichtig ist, dass sie nur einmal nach rechts gefallen ist, und das ist ja identisch mit der Lottoziehung, wo es auch nur darauf ankommt, ob eine Kugel gezogen wird.
Also muss die Kugel in Fach 1 genau einmal (von 10) nach rechts fallen, Und diese anzahl der möglichen Wege bestimmt man mit [mm] \vektor{10\\1} [/mm]

Und genauso ergeben sich dann die weiteren Verteilungen.

Hilft das erstmal weiter?

Marius

Bezug
                
Bezug
das galton-modell: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:32 Mo 25.08.2008
Autor: mef

ja ,danke
jetzt bin ich mir sicher , dass ich es verstanden hab.

nun würde ich gerne wissen , ob da eine weitere formel dahinter steckt, worauf dieeses experiment uns führen wird.

wenn ja, könnte es mir einer bitte erklären?

Bezug
                        
Bezug
das galton-modell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Di 26.08.2008
Autor: mef

ok, ist schon erledigt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]