binomische Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) für Interessierte | Datum: | 18:01 Di 30.11.2004 | Autor: | tapsi |
Für alle [mm] \alpha \in \IR [/mm] und alle x [mm] \in \IR [/mm] mit lxl < 1 ist die binomische Reihe [mm] b_{\alpha} [/mm] (x) definiert durch:
[mm] b_{\alpha} [/mm] (x) := [mm] \summe_{n=0}^{ \infty} \vektor{\alpha \\ n} x^{n}= [/mm] 1 + [mm] \vektor{\alpha \\ 1} [/mm] x + [mm] \vektor{\alpha \\ 2} x^{2} [/mm] + ...
Zeigen Sie:
a) Die binomische Reihe [mm] b_{\alpha} [/mm] (x) ist für die angegebenen [mm] \alpha, [/mm] x absolut konvergent.
b) Es gilt: [mm] b_{\alpha} [/mm] (x) * [mm] b_{\beta} [/mm] (x) = [mm] b_{\alpha + \beta} [/mm] (x) [mm] (\alpha, \beta \in \IR),
[/mm]
[mm] b_{0} [/mm] (x)=1, [mm] b_{- \alpha} [/mm] (x)= [mm] b_{\alpha} ((x)^{-1}) [/mm] und [mm] b_{\alpha} [/mm] (x) > 0.
c) Es ist [mm] (b_{\bruch{1}{2}} (x))^{2}= [/mm] 1+x.
d) Es ist [mm] b_{\alpha} [/mm] (x) = [mm] (1+x)^{\alpha} [/mm] für alle [mm] \alpha \in \IZ
[/mm]
|
|
|
|
Hallo,
lese doch bitte zunächst, ob deine Frage nicht schon geschrieben ist. Die gleiche Aufgabe wurde bereits von Aniprofi gestellt, klinke dich doch dort um die Diskussion der Aufgabe mit ein!
mfg
|
|
|
|