www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - beweisarten
beweisarten < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

beweisarten: tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:18 Fr 16.10.2009
Autor: grafzahl123

Aufgabe
n ungerade [mm] \gdw n^2 [/mm] ungerade  
diese äquivalenz soll mithilfe von 2 verschiedenen beweisverfahren gezeigt werden. ein weg durch induktion und der andere indirekt.

zuerst die richtung n ungerade [mm] \Rightarrow n^2 [/mm] ungerade indirekt beweisen:
ich hatte überlegt zu sagen: n gerade [mm] \Rightarrow n^2 [/mm] ungerade
als gerade habe ich 2n festgelegt. daraus folgt 2n [mm] \Rightarrow 4n^2 [/mm]  .  da eine 4 vor dem [mm] n^2 [/mm] steht folgt daraus, dass die zahl gerade sein muss. also ein widerspruch und somit der indirekte beweis für die zu beweisende aussage.
kann man da sso machen?

jetzt die andere richtung durch induktion:
[mm] n^2 [/mm] ungerade [mm] \Rightarrow [/mm] n ungerade
da hab ich noch garkeine idee und würde mich über einen tipp freuen.

schönen abend noch, würde mich freuen wennn mir wer helfen könnte

ich habe diese frage in keinem anderen forum gestellt

        
Bezug
beweisarten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 Fr 16.10.2009
Autor: rabilein1


> n ungerade [mm]\gdw n^2[/mm] ungerade  

Ich habe zwar keine Ahnung, wie ein "Beweis" auszusehen hat, damit er vor "Gericht" besteht, sehe aber folgende Möglichkeit:

n ist ungerade, wenn n=2a+1  (a ist eine natürliche Zahl)


Daraus folgt:
[mm] n^{2} [/mm] = [mm] (2a+1)^{2} [/mm]

[mm] (2a+1)^{2} [/mm] = [mm] 4a^{2} [/mm] + 4a + 1

[mm] 4a^{2} [/mm] ist gerade (wegen Faktor 4)
4a ist gerade (wegen Faktor 4)
1 ist ungerade

Summe aus "gerade" plus "gerade" plus " ungerade" ist immer "ungerade"

Ergo ist [mm] n^{2} [/mm] ungerade.

Ob ein "Richter" dieses als "Beweis" anerkennt, das weiß ich nicht.
(Vielleicht muss man ja vorher erst noch "beweisen", dass 1 ungerade ist ...)


Bezug
                
Bezug
beweisarten: freage
Status: (Frage) beantwortet Status 
Datum: 14:09 Fr 16.10.2009
Autor: grafzahl123

wenn man 2a+1 als ungerade definiert und a eine natürliche zahl (enthält die null nicht) fangen wir ja erst bei drei an, müsste es nicht eher 2a-1 sein.
aber das hilft mir bei meiner frage ja nicht weiter.
ich wollte wissen ob der erste teil der lösung so funktioniert und wie ich mit dem induktionsbeweis verfahren soll.
wäre immer noch dankbar, wenn sich wer dazu äußern würde.
schönes wochenende noch

Bezug
                        
Bezug
beweisarten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Fr 16.10.2009
Autor: M.Rex

Hallo

Du hast am Anfang geschrieben:

n ungerade [mm] \Righarrow n^{2} [/mm] ungerade.

Den Indirekten Beweis kann man durch Widerspruch führen, das ginge. So wie du es gemacht hast, aber nicht.
Wenn du zeigst, n gerade [mm] \Rightarrow [/mm] n² gerade kannst du aber nicht schlussfolgern, dass aus n ungerade folgt, dass n² ungerade ist.

Den indirekten Beweis hast du ja schon gezeigt bekommen.

Für die Rückrichtung [mm] n^{2} [/mm] ungerade [mm] \Rightarrow [/mm] n ungerade fange mal wie folgt an:

[mm] n^{2}\text{ist ungerade} [/mm]
[mm] \Rightarrow 2\text{ist kein Teiler von}n^{2} [/mm]
[mm] \Rightarrow 2\text{ist kein Teiler von}n*n [/mm]

Kommst du jetzt erstmal weiter?

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]