bedingte Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:59 Mi 09.11.2005 | Autor: | burkito |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo Ihr,
bin selbst Dipl.-Math., aber das ist schon eine Weile her. Ihr seid bestimmt viel näher an der Materie und könnt mir dabei helfen, das folgende Problem zu lösen:
Gegeben sind die bedingten Wahrscheinlichkeiten
P(A|B) = μ
P(A|C) = λ
Gesucht ist die bedingte Wahrscheinlichkeit (unter Verwendung von μ, λ)
P(A|B∩C)
Würde mich über Antworten freuen,
Viele Grüße
burkito
|
|
|
|
Hallo burkito,
ich denke die Angaben reichen nicht aus, da man ja noch keine Aussage über die Beziehung von B und C hat.
Man könnte so anfangen:
[mm]P(A | B \cap C)= \bruch{P(A\cap B\cap C)}{P(B\cap C)}=\bruch{P(B\cap A \cap C)}{P(B\cap C)}=[/mm]
[mm]\bruch{P(B)*P(A | B)*P(C | A\cap B)}{P(B)*P(C | B)}=\bruch{P(A|B)*P(C|A\cap B)}{P(C|B)}[/mm]
Bringt aber leider auch noch nicht viel... Wenn B,C unabhängig wären, könnte man mehr machen.
mfg
Daniel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:57 Do 10.11.2005 | Autor: | burkito |
Hallo Daniel,
vielen Dank erstmal für die schnelle Antwort. Schade eigentlich, dass das so einfach nicht geht.
Angenommen, B und C wären unabhängig (das ist allerdings nicht wirklich der Fall), wo siehst du hier die Vereinfachungsmöglichkeit? (A und B bzw. A und C sind jedoch nicht unabhängig!)
Ich könnte mir auch vorstellen, eine Approximation für P(B ∩ C) anzugeben. Ebenso sind Approximationen für P(A), P(B) und P(C) denkbar.
Wenn das alles nicht hilft, welche zusätzlichen Informationen werden wenigstens benötigt, um zu einem akzeptablen Ergebnis zu kommen?
Besten Dank nochmal und viele Grüße
burkito
|
|
|
|
|
Hallo burkito,
OK, das mit den Vereinfachungen bei Unabhängigkeit ist wohl doch nicht so toll, man könnte halt [mm]P(B\cap C)=P(B)*P(C)[/mm] schreiben. Aber nehmen wir mal an, du hättest die zwei gegebenen bedingten Wahrscheinlichkeiten und außerdem Approximationen für [mm]P(A), P(B), P(C), P(B\cap C), P(A \cup B \cup C)[/mm], also als letzte die approx. W'keit, dass überhaupt eines der Ereignisse eintritt. Dann kann man schon was machen:
[mm]P(A | B\cap C)=\bruch{P(A\cap B\cap C)}{P(B\cap C)}[/mm] Der Nenner wird hier approximiert, kümmern wir uns um den Zähler. Mit der Siebformel gilt:
[mm]P(A\cap B\cap C)=P(A)+P(B)+P(C)-P(A\cup B)-P(B\cup C)-P(A\cup C)+P(A\cup B\cup C)[/mm]
Und [mm]P(A\cup B)=P(A)+P(B)-P(A\cap B)=P(A)+P(B)-P(A | B)*P(B)[/mm], analog für [mm]P(A\cup C)[/mm]. Für [mm]P(B\cup C)[/mm] können wir [mm]P(B)+P(C)-P(B\cap C)[/mm] einsetzen. Also ergibt sich
[mm]P(A\cap B\cap C)=P(A)+P(B)+P(C)-P(A)-P(B)+P(A|B)*P(B)-P(B)-P(C)+P(B\cap C)-P(A)-P(C)+P(A|C)*P(C)+P(A\cup B\cup C)=[/mm]
[mm]-P(A)-P(B)-P(C)+\mu*P(B)+P(B\cap C)+\lambda*P(C)+P(A\cup B\cup C)[/mm]
Hoffe das geht mit den Approximationen...
mfg
Daniel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:57 So 13.11.2005 | Autor: | burkito |
hallo daniel,
vielen dank für deine bemühungen!!
da sitz ich nun also mit meinem wahrscheinlichkeits-salat leider glaube ich, dass mir das dann ein paar approximationen zuviel sind, um auf ein aussagekräftiges ergebnis zu kommen. aber vielleicht fällt mir ja noch was ein.
viele grüße
burkito
|
|
|
|