ausgleichproblem < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:35 So 04.01.2015 | Autor: | knowhow |
Aufgabe | Es liege das mathematische Gesetz [mm] y=x_1z+x_2 [/mm] mit zwei unbekannten Parametern [mm] x_1,x_2 [/mm] vor, zu dem ein Satz von Messdaten [mm] \{y_l,z_l\}_{l=1,...,m} [/mm] mit [mm] z_l=l [/mm] gegeben sei.
a) Stelle das zugehörige LGS Ax=y auf. Wie lautet die Normalgleichung für das lin. Ausgleichproblem?
b) Berechne die Cholesky-Zerlegung [mm] A^TA=LL^T [/mm] und schätze die Konditionszahl [mm] cond_2(L) [/mm] |
Hallo,
habe folg. gemacht:
zu a) man erhalte folg. LGS:
[mm] y_1= x_1+x_2
[/mm]
[mm] y_2=2x_1 +x_2 [/mm]
[mm] y_3=3x_1 +x_2
[/mm]
[mm] \vdots
[/mm]
[mm] y_m=mx_1+x_2
[/mm]
[mm] \Rightarrow \underbrace{ \pmat{ 1 & 1 \\ 2 & 1 \\3 & 1\\ \vdots & \vdots \\ m & 1}}_{=:A} \cdot \underbrace{\vektor{x_1 \\ x_2}}_{=:x} =\vektor{y_1 \\ y_2\\y_3\\ \vdots\\y_m}=:y
[/mm]
dann berechne Normalgleichung:
A^TAx=A^Tb
[mm] \Rightarrow A^TA=\pmat{ 1 & 2 & 3 & \cdots & m \\ 1 & 1 & 1 & \cdots & 1 } \cdot \pmat{ 1 & 1 \\ 2 & 1 \\3 & 1\\ \vdots & \vdots \\ m & 1}=\pmat{ 1+2^2+3^2+\cdots +m^2 & 1+2+3+\cdots +m \\ 1+2+3+\cdots +m & \underbrace{1+1+1+ \cdots+1}_{m-mal} }
[/mm]
man kann es noch umschreiben in [mm] \pmat{ \bruch{m(m+1)(2m+1)}{6} & \bruch{m(m+1)}{2} \\ \bruch{m(m+1)}{2} & m }\cdot \vektor{x_1 \\ x_2}
[/mm]
und für [mm] A^T\cdot [/mm] y erhalte dann [mm] \pmat{ 1 & 2 & 3 & \cdots & m \\ 1 & 1 & 1 & \cdots & 1 } \cdot \vektor{y_1 \\ y_2\\y_3\\ \vdots\\y_m}=\vektor{y_1 +2y_2+ \cdots + my_m\\ y_1+y_2+\cdots + y_m}
[/mm]
dann ist (I) [mm] \bruch{m(m+1)(2m+1)}{6} x_1+ \bruch{m(m+1)}{2}x_2=y_1 +2y_2+ \cdots [/mm] + [mm] my_m
[/mm]
(II) [mm] \bruch{m(m+1)}{2}x_1+ mx_2 =y_1+y_2+\cdots [/mm] + [mm] y_m
[/mm]
ab da komme ich nicht weiter weil ich nicht weiß wie ich jeweils die y zusammenfasse (man kann es in eine reihe zusammenfasse aber das bring mich auch nicht weiter)
kann mir da jemnad helfen.
ist es bis dahin überhaupt richtig?
zu b) [mm] A^T\cdot A=\pmat{ \bruch{m(m+1)(2m+1)}{6} & \bruch{m(m+1)}{2} \\ \bruch{m(m+1)}{2} & m }
[/mm]
und [mm] LL^T=\pmat{ l^2_{11} & l_{21}l_{11} \\ l_{21}l_{11} & l^2_{11}+l^2_{22} }
[/mm]
man erhält dann für:
[mm] l_{11}= (\bruch{m(m+1)(2m+1)}{6})^{1/2}
[/mm]
[mm] l_{21}=\bruch{m(m+1)}{2}\cdot(\bruch{6}{m(m+1)(2m+1)})^{1/2}
[/mm]
[mm] l_{22}=(\bruch{6-m(m+1)(2m+1)}{6})^{1/2}
[/mm]
damit habe wir als
[mm] L=\pmat{ (\bruch{m(m+1)(2m+1)}{6})^{1/2} & 0 \\ \bruch{m(m+1)}{2}\cdot(\bruch{6}{m(m+1)(2m+1)})^{1/2} & (\bruch{6-m(m+1)(2m+1)}{6})^{1/2} }
[/mm]
ist die choleskyzerlegung richtig?
ich habe probleme mit der berechnung der KOnditionszahl.
die formel lautet allg ja [mm] cond(A)=||A||\cdot||A^{-1}|| [/mm]
hier in dem fall muss man die 2-norm verwenden. ich habe es berechnet aber irgendwie komme ich zu keinen gescheitern ergebnis und es sehr aufwendig. gibt es eine einfachen weg um dieses zu berechnen?
ich bin für jeden tipp dankbar
|
|
|
|
Hallo knowhow,
> Es liege das mathematische Gesetz [mm]y=x_1z+x_2[/mm] mit zwei
> unbekannten Parametern [mm]x_1,x_2[/mm] vor, zu dem ein Satz von
> Messdaten [mm]\{y_l,z_l\}_{l=1,...,m}[/mm] mit [mm]z_l=l[/mm] gegeben sei.
>
> a) Stelle das zugehörige LGS Ax=y auf. Wie lautet die
> Normalgleichung für das lin. Ausgleichproblem?
>
> b) Berechne die Cholesky-Zerlegung [mm]A^TA=LL^T[/mm] und schätze
> die Konditionszahl [mm]cond_2(L)[/mm]
> Hallo,
>
> habe folg. gemacht:
>
> zu a) man erhalte folg. LGS:
>
> [mm]y_1= x_1+x_2[/mm]
> [mm]y_2=2x_1 +x_2[/mm]
> [mm]y_3=3x_1 +x_2[/mm]
> [mm]\vdots[/mm]
> [mm]y_m=mx_1+x_2[/mm]
>
> [mm]\Rightarrow \underbrace{ \pmat{ 1 & 1 \\ 2 & 1 \\3 & 1\\ \vdots & \vdots \\ m & 1}}_{=:A} \cdot \underbrace{\vektor{x_1 \\ x_2}}_{=:x} =\vektor{y_1 \\ y_2\\y_3\\ \vdots\\y_m}=:y[/mm]
>
> dann berechne Normalgleichung:
>
> A^TAx=A^Tb
>
> [mm]\Rightarrow A^TA=\pmat{ 1 & 2 & 3 & \cdots & m \\ 1 & 1 & 1 & \cdots & 1 } \cdot \pmat{ 1 & 1 \\ 2 & 1 \\3 & 1\\ \vdots & \vdots \\ m & 1}=\pmat{ 1+2^2+3^2+\cdots +m^2 & 1+2+3+\cdots +m \\ 1+2+3+\cdots +m & \underbrace{1+1+1+ \cdots+1}_{m-mal} }[/mm]
>
> man kann es noch umschreiben in [mm]\pmat{ \bruch{m(m+1)(2m+1)}{6} & \bruch{m(m+1)}{2} \\ \bruch{m(m+1)}{2} & m }\cdot \vektor{x_1 \\ x_2}[/mm]
>
> und für [mm]A^T\cdot[/mm] y erhalte dann [mm]\pmat{ 1 & 2 & 3 & \cdots & m \\ 1 & 1 & 1 & \cdots & 1 } \cdot \vektor{y_1 \\ y_2\\y_3\\ \vdots\\y_m}=\vektor{y_1 +2y_2+ \cdots + my_m\\ y_1+y_2+\cdots + y_m}[/mm]
>
> dann ist (I) [mm]\bruch{m(m+1)(2m+1)}{6} x_1+ \bruch{m(m+1)}{2}x_2=y_1 +2y_2+ \cdots[/mm]
> + [mm]my_m[/mm]
> (II) [mm]\bruch{m(m+1)}{2}x_1+ mx_2 =y_1+y_2+\cdots[/mm]
> + [mm]y_m[/mm]
>
> ab da komme ich nicht weiter weil ich nicht weiß wie ich
> jeweils die y zusammenfasse (man kann es in eine reihe
> zusammenfasse aber das bring mich auch nicht weiter)
> kann mir da jemnad helfen.
> ist es bis dahin überhaupt richtig?
>
Ja.
> zu b) [mm]A^T\cdot A=\pmat{ \bruch{m(m+1)(2m+1)}{6} & \bruch{m(m+1)}{2} \\ \bruch{m(m+1)}{2} & m }[/mm]
>
> und [mm]LL^T=\pmat{ l^2_{11} & l_{21}l_{11} \\ l_{21}l_{11} & l^2_{11}+l^2_{22} }[/mm]
>
Die Cholesky-Zerlegung ist doch
[mm]AA^{T}=LDL^{T}[/mm]
,wobei L eine untere Dreiecksmatrix mit 1en auf der Diagonalen
und D eine Diagonalmatrix ist.
Siehe dazu: Cholesky-Zerlegung.
> man erhält dann für:
>
> [mm]l_{11}= (\bruch{m(m+1)(2m+1)}{6})^{1/2}[/mm]
>
> [mm]l_{21}=\bruch{m(m+1)}{2}\cdot(\bruch{6}{m(m+1)(2m+1)})^{1/2}[/mm]
>
> [mm]l_{22}=(\bruch{6-m(m+1)(2m+1)}{6})^{1/2}[/mm]
>
> damit habe wir als
>
> [mm]L=\pmat{ (\bruch{m(m+1)(2m+1)}{6})^{1/2} & 0 \\ \bruch{m(m+1)}{2}\cdot(\bruch{6}{m(m+1)(2m+1)})^{1/2} & (\bruch{6-m(m+1)(2m+1)}{6})^{1/2} }[/mm]
>
> ist die choleskyzerlegung richtig?
> ich habe probleme mit der berechnung der KOnditionszahl.
> die formel lautet allg ja [mm]cond(A)=||A||\cdot||A^{-1}||[/mm]
>
> hier in dem fall muss man die 2-norm verwenden. ich habe es
> berechnet aber irgendwie komme ich zu keinen gescheitern
> ergebnis und es sehr aufwendig. gibt es eine einfachen weg
> um dieses zu berechnen?
>
> ich bin für jeden tipp dankbar
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:00 So 04.01.2015 | Autor: | knowhow |
ich habe es jetzt folg gemacht
[mm] \pmat{ \bruch{m(m+1)(2m+1)}{6} & \bruch{m(m+1)}{2} \\ \bruch{m(m+1)}{2} & m }=\underbrace{\pmat{ 1 & 0 \\ l_{21} & 1 }}_{=:L}\cdot \underbrace{\pmat{ r_{11} & r_{12} \\ 0 & r_{22} }}_{=:R}=\pmat{ r_{11} & r_{21} \\ r_{11}l_{21} & l_{21}r_{21}+r_{22} }
[/mm]
[mm] r_{11}=\bruch{m(m+1)(2m+1)}{6}
[/mm]
[mm] r_{21}=\bruch{m(m+1)}{2}
[/mm]
[mm] l_{21}=\bruch{3}{2m+1}
[/mm]
[mm] r_{22}=\bruch{m(m-1)}{2(2m+1)}
[/mm]
[mm] L=\pmat{ 1 & 0 \\ \bruch{3}{2m+1} & 1 }
[/mm]
[mm] R=\pmat{ \bruch{m(m+1)(2m+1)}{6} & \bruch{m(m+1)}{2} \\ 0 & \bruch{m(m-1)}{2(2m+1)}}
[/mm]
[mm] \Rightarrow A=LR=\pmat{ 1 & 0 \\ \bruch{3}{2m+1} & 1 } \cdot \pmat{ \bruch{m(m+1)(2m+1)}{6} & \bruch{m(m+1)}{2} \\ 0 & \bruch{m(m-1)}{2(2m+1)}}= \pmat{ 1 & 0 \\ \bruch{3}{2m+1} & 1 } \cdot \pmat{ \bruch{m(m+1)(2m+1)}{6} & 0 \\ 0 & \bruch{m(m-1)}{2(2m+1)}} \cdot \pmat{ 1 & \bruch{3}{2m+1} \\ 0 & 1 }
[/mm]
man erhält dann die cholesky-zerlegung
[mm] LL^T=\pmat{ ( \bruch{m(m+1)(2m+1)}{6})^{1/2} & 0 \\ \bruch{3}{2m+1}\cdot\bruch{m(m+1)(2m+1)}{6})^{1/2} & (\bruch{m(m-1)}{2(2m+1)})^{1/2} } \cdot \pmat{ ( \bruch{m(m+1)(2m+1)}{6})^{1/2} & \bruch{3}{2m+1}\cdot \bruch{m(m+1)(2m+1)}{6})^{1/2} \\ 0 & (\bruch{m(m-1)}{2(2m+1)})^{1/2} }
[/mm]
ist es jetzt richtig?
Wie mache weiter bzw wie berechne ich jetzt die normalgleichung zu a)?
|
|
|
|
|
Hallo know-how,
> ich habe es jetzt folg gemacht
>
> [mm]\pmat{ \bruch{m(m+1)(2m+1)}{6} & \bruch{m(m+1)}{2} \\ \bruch{m(m+1)}{2} & m }=\underbrace{\pmat{ 1 & 0 \\ l_{21} & 1 }}_{=:L}\cdot \underbrace{\pmat{ r_{11} & r_{12} \\ 0 & r_{22} }}_{=:R}=\pmat{ r_{11} & r_{21} \\ r_{11}l_{21} & l_{21}r_{21}+r_{22} }[/mm]
>
> [mm]r_{11}=\bruch{m(m+1)(2m+1)}{6}[/mm]
>
> [mm]r_{21}=\bruch{m(m+1)}{2}[/mm]
>
> [mm]l_{21}=\bruch{3}{2m+1}[/mm]
>
> [mm]r_{22}=\bruch{m(m-1)}{2(2m+1)}[/mm]
>
> [mm]L=\pmat{ 1 & 0 \\ \bruch{3}{2m+1} & 1 }[/mm]
>
> [mm]R=\pmat{ \bruch{m(m+1)(2m+1)}{6} & \bruch{m(m+1)}{2} \\ 0 & \bruch{m(m-1)}{2(2m+1)}}[/mm]
>
> [mm]\Rightarrow A=LR=\pmat{ 1 & 0 \\ \bruch{3}{2m+1} & 1 } \cdot \pmat{ \bruch{m(m+1)(2m+1)}{6} & \bruch{m(m+1)}{2} \\ 0 & \bruch{m(m-1)}{2(2m+1)}}= \pmat{ 1 & 0 \\ \bruch{3}{2m+1} & 1 } \cdot \pmat{ \bruch{m(m+1)(2m+1)}{6} & 0 \\ 0 & \bruch{m(m-1)}{2(2m+1)}} \cdot \pmat{ 1 & \bruch{3}{2m+1} \\ 0 & 1 }[/mm]
>
> man erhält dann die cholesky-zerlegung
>
> [mm]LL^T=\pmat{ ( \bruch{m(m+1)(2m+1)}{6})^{1/2} & 0 \\ \bruch{3}{2m+1}\cdot\bruch{m(m+1)(2m+1)}{6})^{1/2} & (\bruch{m(m-1)}{2(2m+1)})^{1/2} } \cdot \pmat{ ( \bruch{m(m+1)(2m+1)}{6})^{1/2} & \bruch{3}{2m+1}\cdot \bruch{m(m+1)(2m+1)}{6})^{1/2} \\ 0 & (\bruch{m(m-1)}{2(2m+1)})^{1/2} }[/mm]
>
> ist es jetzt richtig?
>
Ja.
> Wie mache weiter bzw wie berechne ich jetzt die
> normalgleichung zu a)?
Die Normalgleichung hast Du doch schon berechnet.
Es ist doch jetzt nur noch die Konditionszahl der Matrix L abzuschätzen.
Gruss
MathePower
|
|
|
|