www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - aus Lösungsmenge LGS angeben
aus Lösungsmenge LGS angeben < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

aus Lösungsmenge LGS angeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Do 14.01.2010
Autor: mije

Aufgabe
Man gebe ein lineares Gleichungssystem mit Koeffizienten aus  [mm] \IR [/mm] an, dessen Lösungsmenge [mm] \{ (1,0,1,2,1) + \lambda_{1}(-1,1,2,0,0) + \lambda_{2}(-17,-7,0,4,10) | \lambda_{1}, \lambda_{2} \in \IR \} [/mm] ist.

Hey Leute,
ich verzweifle gerade an  dieser Aufgabe und mir fehlt irgendwie die zündende Idee. Wie ich die Lösungsmenge von einem LGS bestimme, habe ich halbwegs verstanden, aber die Aufgabe ist ja genau die Umkehrung.

Ich weiß, dass (1,0,1,2,1) die spezielle Lösung ist für das LGS, was ich aufstellen will. Die anderen beiden Vektoren sind die Basisvektoren für den homogenen Lösungsraum. Stimmt es, dass dann die Dimension des hom. Lösungsraums gleich 2 ist?
Jetzt habe ich mir überlegt, dass mein Gleichungssystem die Variablen [mm] x_{1} [/mm] bis [mm] x_{5} [/mm] haben muss. Außerdem glaube ich, dass gilt: dim des hom. Lösungsraumes = Anzahl der Variablen + RgA. Daraus würde folgen, dass RgA= 5-2=3 gilt. Also müsste meine umgeformte "Endmatrix" 3 linear unabhängige Zeilen haben.
Muss ich also 5 Gleichungen aufstellen oder genügen auch weniger?
Stimmt es, dass gelten muss:  [mm] (x_{1},...,x_{5})=(1,0,1,2,1) [/mm] + [mm] \lambda_{1}(-1,1,2,0,0) [/mm] + [mm] \lambda_{2}(-17,-7,0,4,10) [/mm] ? und kann ich mir die Lambdas beliebig wählen? Und wie komme ich dann auf konkrete Gleichungen?
Vielen Dank für eure Hilfe! :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
aus Lösungsmenge LGS angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 14.01.2010
Autor: angela.h.b.


> Man gebe ein lineares Gleichungssystem mit Koeffizienten
> aus  [mm]\IR[/mm] an, dessen Lösungsmenge [mm]\{ (1,0,1,2,1) + \lambda_{1}(-1,1,2,0,0) + \lambda_{2}(-17,-7,0,4,10) | \lambda_{1}, \lambda_{2} \in \IR \}[/mm]
> ist.
>  Hey Leute,
>  ich verzweifle gerade an  dieser Aufgabe und mir fehlt
> irgendwie die zündende Idee. Wie ich die Lösungsmenge von
> einem LGS bestimme, habe ich halbwegs verstanden, aber die
> Aufgabe ist ja genau die Umkehrung.
>  

Hallo,

[willkommenmr].

> Ich weiß, dass (1,0,1,2,1) die spezielle Lösung ist für
> das LGS, was ich aufstellen will. Die anderen beiden
> Vektoren sind die Basisvektoren für den homogenen
> Lösungsraum. Stimmt es, dass dann die Dimension des hom.
> Lösungsraums gleich 2 ist?

Ja, das ist richtig.

>  Jetzt habe ich mir überlegt, dass mein Gleichungssystem
> die Variablen [mm]x_{1}[/mm] bis [mm]x_{5}[/mm] haben muss.

Genau.
Und das GS wird gelöst für

[mm] (x_1, [/mm] ..., [mm] x_5)= [/mm] (1,0,1,2,1) + [mm] \lambda_{1}(-1,1,2,0,0) [/mm] + [mm] \lambda_{2}(-17,-7,0,4,10) [/mm]

Hieraus erhältst Du 5 Gleichungen.
Eliminiere daraus [mm] \lambda_1 [/mm] und [mm] \lambda_1. [/mm]

Gruß v. Angela





Bezug
                
Bezug
aus Lösungsmenge LGS angeben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Fr 15.01.2010
Autor: mije

Vielen Dank für deine Hilfe! Ich glaube, ich habe jetzt die Lösung. :)
Viele Grüße

Bezug
                
Bezug
aus Lösungsmenge LGS angeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Mo 18.01.2010
Autor: KrabbyPatty

Hallo Angela,

kannst du mir vielleicht noch einen Tipp geben, wie ich [mm] \lambda_{1} [/mm] und [mm] \lambda_{2} [/mm] eliminieren kann? Ich habe ein Ergebnis, wenn ich [mm] \lambda_{1} [/mm] eliminiere, aber leider hatte ich einen Koeffizienten vergessen, war also alles falsch.

Bezug
                        
Bezug
aus Lösungsmenge LGS angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Mo 18.01.2010
Autor: angela.h.b.

Hallo,

löse eine Gleichung nach [mm] \lambda_1 [/mm] auf und ersetze in allen anderen Gleichungen [mm] \lambda_1 [/mm] durch den gewonnenen Ausdruck.

Löses dann eine Gleichung nach [mm] \lambda_2 [/mm] auf und ersetze [mm] \lambda_2 [/mm] in den verbleibenden Gleichungen. Du behältst 3 Gleichungen, in denen kein [mm] \lambda [/mm] mehr vorkommt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]