www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - affine räume
affine räume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

affine räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Di 19.08.2008
Autor: vivo

Hallo,

a) Sei A = v + U ein affiner Unterraum, dann gilt w [mm] \in [/mm] A auch A = w + U

b) seien [mm] A_1 [/mm] = [mm] v_1 [/mm] + [mm] U_1 [/mm] und [mm] A_2 [/mm] = [mm] v_2 [/mm] + [mm] U_2 [/mm] zwei affine Unterräume, so ist [mm] A:=A_1\cap A_2 [/mm] entweder leer oder

A = a + [mm] U_1 \cap U_2 [/mm]

für ein beliebiges a [mm] \in [/mm] A


Versuch:

a) schreibe: v' = v + u'
A [mm] \subset [/mm] v' + U denn x [mm] \in [/mm] A -> x = v + u mit u [mm] \in [/mm] U -> x = v' + (u - u') -> x [mm] \in [/mm] v' + U

und v' + U [mm] \subset [/mm] A denn x = v' + u   [mm] \in [/mm]  v'+U   -> x= v + (u + u')   [mm] \in [/mm] v + U

stimmt das soweit ?

b) hier weiß ich leider nicht wie ich ansetzten soll, vielen dank für eure Hilfe !

gruß


        
Bezug
affine räume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Di 19.08.2008
Autor: angela.h.b.


> a) Sei A = v + U ein affiner Unterraum, dann gilt w [mm]\in[/mm] A
> auch A = w + U
>  
> b) seien [mm]A_1[/mm] = [mm]v_1[/mm] + [mm]U_1[/mm] und [mm]A_2[/mm] = [mm]v_2[/mm] + [mm]U_2[/mm] zwei affine
> Unterräume, so ist [mm]A:=A_1\cap A_2[/mm] entweder leer oder
>
> A = a + [mm]U_1 \cap U_2[/mm]
>  
> für ein beliebiges a [mm]\in[/mm] A



> Versuch:
>  
> a) schreibe: v' = v + u'

Hallo,

zunächst mal mußt Du erklären, was es mit v' auf sich hat.

Wo kommt v' her, und warum kannst Du das so schreiben?

>  A [mm]\subset[/mm] v' + U denn x [mm]\in[/mm] A -> x = v + u mit u [mm]\in[/mm] U ->

> x = v' + (u - u') -> x [mm]\in[/mm] v' + U
>  
> und v' + U [mm]\subset[/mm] A denn x = v' + u   [mm]\in[/mm]  v'+U   -> x= v
> + (u + u')   [mm]\in[/mm] v + U
>  
> stimmt das soweit ?

Die Gedanken sind richtig, beim Aufschreiben würde ich ein paar mehr Wörtchen spendieren.

>  
> b) hier weiß ich leider nicht wie ich ansetzten soll,
> vielen dank für eure Hilfe !

Überlege Dir folgendes:

wenn der Schnitt nichtleer ist, gibt es zwei Möglichkeiten:

1. Der Schnitt A enthält nur ein Element a. Dann ist er ein affiner Unterraum, denn man kann A schreiben als A=...

2. Der Schnitt enthält mehr als ein Element. Seien a und x irgendzwei Elemente aus dem Schnitt.

Überlege Dir, daß x-a in [mm] U_1 \cap U_2 [/mm] liegt.

Ziehe Schlüsse daraus, daß x=a+(x-a).

Gruß v. Angela

Bezug
                
Bezug
affine räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Di 19.08.2008
Autor: vivo

danke erstmal ...

leider stehe ich voll auf der leitung, warum ist das so:

> Überlege Dir, daß x-a in [mm]U_1 \cap U_2[/mm] liegt.

bzw. woran sehe ich dass?

Bezug
                        
Bezug
affine räume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Di 19.08.2008
Autor: angela.h.b.


> > Überlege Dir, daß x-a in [mm]U_1 \cap U_2[/mm] liegt.
>  
> bzw. woran sehe ich dass?

Hallo,

wenn x und a beide im Schnitt liegen, liegen sie beide in [mm] A_1. [/mm]

Was bedeutet das für x-a?

Dieselbe Überlegung dann für [mm] A_2. [/mm]

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]