Äquivalenz/Verrentung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:08 Do 06.08.2009 | Autor: | phisch |
Aufgabe | Jemand schuldet 10.000 € (fällig sofort), 30.000 € (fällig in 4,25 Jahren) und 20.000 € (fällig in 8 Jahren). Es wird neu vereinbart: Die gesamte Schuld soll getilgt werden durch über 10 Jahre halbjährlich nachschüssig zu zahlende Raten, beginnend in 2 Jahren. Wie hoch sind diese Raten ? Es wird stets nach der Sparbuchmethode mit einem Zinssatz von 7,5 % p.a. verzinst. |
Moin erstmal an alle.
Ich habe die Schulden nach üblicher Äquivalenzgleichung berechnet, also R in zwei Jahren. Das wären dann 77.200,07. Dies dann dividiert durch 1,5433 [mm] (1,075^6) [/mm] ergibt 50.022,72. Dann die Ersatzrentenrate (2,0375 r) in die nachschüssige Rentenformel eingesetzt und 13,98556495 erhalten. Dividiere ich dann mein R mit 13,..., erhalte ich r= 3.576,74.
Ergebnis lt. Prof: 3.574,95
wo liege ich falsch ?
ps: habe es noch nich so mit den Formeln hier.
vielen Dank im Voraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:21 Do 06.08.2009 | Autor: | Josef |
> Jemand schuldet 10.000 € (fällig sofort), 30.000 €
> (fällig in 4,25 Jahren) und 20.000 € (fällig in 8
> Jahren). Es wird neu vereinbart: Die gesamte Schuld soll
> getilgt werden durch über 10 Jahre halbjährlich
> nachschüssig zu zahlende Raten, beginnend in 2 Jahren. Wie
> hoch sind diese Raten ? Es wird stets nach der
> Sparbuchmethode mit einem Zinssatz von 7,5 % p.a. verzinst.
> Moin erstmal an alle.
>
> Ich habe die Schulden nach üblicher Äquivalenzgleichung
> berechnet, also R in zwei Jahren. Das wären dann
> 77.200,07. Dies dann dividiert durch 1,5433 [mm](1,075^6)[/mm]
> ergibt 50.022,72. Dann die Ersatzrentenrate (2,0375 r) in
> die nachschüssige Rentenformel eingesetzt und 13,98556495
> erhalten. Dividiere ich dann mein R mit 13,..., erhalte ich
> r= 3.576,74.
>
> Ergebnis lt. Prof: 3.574,95
>
> wo liege ich falsch ?
Hier bietet sich die Abzinsung an.
Der Ansatz lautet:
[mm] 10.000+\bruch{30.000}{1,075^4 *(1+0,075*0,25)} [/mm] + [mm] \bruch{20.000}{1,075^8} [/mm] = [mm] R*(2+\bruch{0,075}{2}*1)*\bruch{1,075^{10}-1}{0,075}*\bruch{1}{1,075^{12}}
[/mm]
R = 3.574,95
Viele Grüße
Josef
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:18 Do 06.08.2009 | Autor: | phisch |
vielen lieben dank für die schnelle antwort, und das bei dem wetter ! ich verneige mich.
- aber auf die abzinsung wär ich wohl dies jahr nicht mehr gekommen. ich hatte immer diese "in zwei jahren" vor augen...naja, ich hab´s verstanden und hoffe es bringt mich weiter.
schönes wochenende noch !
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:17 Do 06.08.2009 | Autor: | Josef |
> Jemand schuldet 10.000 € (fällig sofort), 30.000 €
> (fällig in 4,25 Jahren) und 20.000 € (fällig in 8
> Jahren). Es wird neu vereinbart: Die gesamte Schuld soll
> getilgt werden durch über 10 Jahre halbjährlich
> nachschüssig zu zahlende Raten, beginnend in 2 Jahren. Wie
> hoch sind diese Raten ? Es wird stets nach der
> Sparbuchmethode mit einem Zinssatz von 7,5 % p.a. verzinst.
> Moin erstmal an alle.
>
> Ich habe die Schulden nach üblicher Äquivalenzgleichung
> berechnet, also R in zwei Jahren. Das wären dann
> 77.200,07. Dies dann dividiert durch 1,5433 [mm](1,075^6)[/mm]
> ergibt 50.022,72. Dann die Ersatzrentenrate (2,0375 r) in
> die nachschüssige Rentenformel eingesetzt und 13,98556495
> erhalten. Dividiere ich dann mein R mit 13,..., erhalte ich
> r= 3.576,74.
>
> Ergebnis lt. Prof: 3.574,95
>
> wo liege ich falsch ?
du hast richtig gerechnet!
Die Äquivalenz von Zahlungsreihen bei linearer Verzinsung ist abhängig von der Wahl des Bezugsstichtags. Zwei Zahlungen sind also beim gleichen Zinssatz äquivalent als auch nicht äquivalent - im Widerspruch zu jeder Logik. Die Widersprüchlichkeiten lassen sich prinzipiell nicht vermeiden (es sei denn, man verzichtet vollständig auf die lineare Verzinsung). Daher empfiehlt es sich, eine Vereinbarung darüber zu treffen, welcher Stichtag bei linearer Verzinsung gewählt werden soll.
Viele Grüße
Josef
|
|
|
|