www.vorhilfe.de
- Förderverein -
Der Förderverein.

Gemeinnütziger Verein zur Finanzierung des Projekts Vorhilfe.de.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Impressum
Forenbaum
^ Forenbaum
Status VH e.V.
  Status Vereinsforum

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Suchen
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Zwischenkörper
Zwischenkörper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischenkörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Do 30.12.2010
Autor: jacob17

Hallo zusammen,
Und zwar frage ich mich folgendes:
Wie bestimmt man alle Zwischenkörper einer Erweiterung? Gibt es dafür eine bestimmte Systematik?
Angenommen man nimmt den Körper der rationalen Zahlen also Q und erweitert diesen zu [mm] Q(\wurzel{2},\wurzel{3},\wurzel{5}) [/mm] Wie erhält man nun alle Zwischenkörper? Ist es zunächst sinnvoll eine Basis von  [mm] Q(\wurzel{2},\wurzel{3},\wurzel{5}) [/mm] anzugeben?
jacob

        
Bezug
Zwischenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 So 02.01.2011
Autor: felixf

Moin!

> Hallo zusammen,
>  Und zwar frage ich mich folgendes:
>  Wie bestimmt man alle Zwischenkörper einer Erweiterung?
> Gibt es dafür eine bestimmte Systematik?
> Angenommen man nimmt den Körper der rationalen Zahlen also
> Q und erweitert diesen zu
> [mm]Q(\wurzel{2},\wurzel{3},\wurzel{5})[/mm] Wie erhält man nun
> alle Zwischenkörper? Ist es zunächst sinnvoll eine Basis
> von  [mm]Q(\wurzel{2},\wurzel{3},\wurzel{5})[/mm] anzugeben?
> jacob  

In diesem Fall handelt es sich um eine Galois-Erweiterung von [mm] $\IQ$. [/mm] Du kannst also die Galoisgruppe bestimmen und alle Untergruppen dieser; diese korrespondieren dann zu den Zwischenkoerpern.

Falls du eine beliebige Erweiterung $L / K$ gegeben ist, die separabel ist, kannst du den Galoisabschluss [mm] $\hat{L}$ [/mm] von $L$ ueber $K$ betrachten und davon die Galoisgruppe [mm] $Gal(\hat{L} [/mm] / K)$ bestimmen; dann bestimmst du die Untergruppe $U$ mit $Fix(U) = L$. Die Zwischenkoerper von $L / K$ entsprechen genau den Untergruppen von [mm] $Gal(\hat{L} [/mm] / K)$, welche $U$ enthalten.

(Und ja, das macht das ganze nicht umbedingt einfacher auszurechnen. Aber es ist besser als nichts ;-) )

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
ev.vorhilfe.de
[ Startseite | Mitglieder | Impressum ]